Parallel blind deconvolution of astronomical images based on the fractal energy ratio of the image and regularization of the point spread function

A parallel blind deconvolution algorithm is presented. The algorithm contains the constraints of the point spread function (PSF) derived from the physical process of the imaging. Additionally, in order to obtain an effective restored image, the fractal energy ratio is used as an evaluation criterion to estimate the quality of the image. This algorithm is fine–grained parallelized to increase the calculation speed. Results of numerical experiments and real experiments indicate that this algorithm is effective.

[1]  Ingeborg Tastl,et al.  Sharpness measure: towards automatic image enhancement , 2005, IEEE International Conference on Image Processing 2005.

[2]  Sijiong Zhang,et al.  Simulation and fabrication of the atmospheric turbulence phase screen based on a fractal model , 2012 .

[3]  V. Mahajan Zernike circle polynomials and optical aberrations of systems with circular pupils. , 1994, Applied optics.

[4]  Robert K. Tyson Principles of Adaptive Optics , 1991 .

[5]  A. Carasso Linear and Nonlinear Image Deblurring: A Documented Study , 1999 .

[6]  J. Beckers ADAPTIVE OPTICS FOR ASTRONOMY: Principles, Performance, and Applications , 1993 .

[7]  Frank Y. Shih,et al.  Image Processing and Pattern Recognition: Fundamentals and Techniques , 2010 .

[8]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[9]  K. Sreenivasan FRACTALS AND MULTIFRACTALS IN FLUID TURBULENCE , 1991 .

[10]  Timothy J. Schulz,et al.  Multiframe blind deconvolution of astronomical images , 1993 .

[11]  Benoit B. Mandelbrot,et al.  Fractal geometry: what is it, and what does it do? , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  É. Thiébaut,et al.  Strict a priori constraints for maximum-likelihood blind deconvolution , 1995 .

[13]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[14]  Bruce G. Elmegreen,et al.  Fractal Structure in Galactic Star Fields , 2001 .

[15]  M. Bertero,et al.  A convergent blind deconvolution method for post-adaptive-optics astronomical imaging , 2013, 1305.0421.

[16]  Charles B. Cameron Parallel Ray Tracing Using the Message Passing Interface , 2008, IEEE Transactions on Instrumentation and Measurement.

[17]  Xiangqun Cui,et al.  Active Optics in LAMOST , 2004 .

[18]  Mario Bertero,et al.  Image restoration methods for the Large Binocular Telescope (LBT) , 2000 .

[19]  Jean-François Hochedez,et al.  Virtual Super Resolution of Scale Invariant Textured Images Using Multifractal Stochastic Processes , 2010, Journal of Mathematical Imaging and Vision.

[20]  Eric Michielssen,et al.  Genetic algorithm optimization applied to electromagnetics: a review , 1997 .

[21]  Deepa Kundur,et al.  Blind Image Deconvolution , 2001 .

[22]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[23]  Jean-François Hochedez,et al.  Scale invariant images in astronomy through the lens of multifractal modeling , 2011, 2011 18th IEEE International Conference on Image Processing.

[24]  Marcel Carbillet,et al.  Strehl-constrained iterative blind deconvolution for post-adaptive-optics data , 2009 .

[25]  F. Pezzella,et al.  An adaptive genetic algorithm for large-size open stack problems , 2013 .

[26]  D. A. Fish,et al.  Blind deconvolution by means of the Richardson-Lucy algorithm. , 1995 .

[27]  J. L. Véhel,et al.  Stochastic fractal models for image processing , 2002, IEEE Signal Process. Mag..

[28]  Lalit M. Patnaik,et al.  Adaptive probabilities of crossover and mutation in genetic algorithms , 1994, IEEE Trans. Syst. Man Cybern..

[29]  J. C. Dainty,et al.  Iterative blind deconvolution method and its applications , 1988 .

[30]  Mitsuo Gen,et al.  Performance Analysis of Adaptive Genetic Algorithms with Fuzzy Logic and Heuristics , 2003, Fuzzy Optim. Decis. Mak..

[31]  Lothar Noethe,et al.  Active Optics: I. A System for Optimizing the Optical Quality and Reducing the Costs of Large Telescopes , 1987 .

[32]  Stuart Jefferies,et al.  Fast and optimal multiframe blind deconvolution algorithm for high-resolution ground-based imaging of space objects. , 2009, Applied optics.

[33]  Li Junqing,et al.  A New Adaptive Parallel Genetic Algorithm , 2013, 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics.

[34]  Nicolas A. Roddier Atmospheric wavefront simulation using Zernike polynomials , 1990 .

[35]  A. Labeyrie Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images , 1970 .