Symbolic Recipes for Polynomial System Solving

In many branches of science and engineering where mathematics is used, the resolution of a problem coming from practice is often reduced to the search of a solution for a system of (algebraic or differential) equations modelling the considered problem. From our point of view, to solve a polynomial system of equations is to rewrite it (i.e., to present it in a different form) in such a way that some ‘nontrivial’ information about its solutions can be derived from this new presentation. The information mentioned above can be related to the existence or non-existence of complex or real solutions, to the number of real or complex solutions, to the approximation of one or several solutions, etc.

[1]  Marc Moreno Maza,et al.  Calculs de pgcd au-dessus des tours d'extensions simples et resolution des systemes d'equations algebriques , 1997 .

[2]  Patrizia M. Gianni,et al.  Decomposition of Algebras , 1988, ISSAC.

[3]  T. Wörmann,et al.  Radical computations of zero-dimensional ideals and real root counting , 1996 .

[4]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[5]  N. Bose Multidimensional Systems Theory , 1985 .

[6]  Robert M. Corless,et al.  Gröbner bases and matrix eigenproblems , 1996, SIGS.

[7]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[8]  Marie-Françoise Roy,et al.  Zeros, multiplicities, and idempotents for zero-dimensional systems , 1996 .

[9]  Maria Grazia Marinari,et al.  The shape of the Shape Lemma , 1994, ISSAC '94.

[10]  Michael Kalkbrener Solving systems of algebraic equations by using Gröbner bases , 1987, EUROCAL.

[11]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[12]  Bud Mishra,et al.  Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.

[13]  Laureano González-Vega,et al.  Using Symmetric Functions to Describe the Solution Set of a Zero Dimensional Ideal , 1995, AAECC.

[14]  Kazuhiro Yokoyama,et al.  Solutions of Systems of Algebraic Equations and Linear Maps on Residue Class Rings , 1992, J. Symb. Comput..

[15]  Marie-Françoise Roy,et al.  Counting real zeros in the multivariate case , 1993 .

[16]  Patrizia M. Gianni,et al.  Properties of Gröbner bases under specializations , 1987, EUROCAL.

[17]  Marie-Françoise Roy,et al.  Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula , 1996 .

[18]  Y. N. Lakshman,et al.  On the Complexity of Zero-dimensional Algebraic Systems , 1991 .

[19]  Jean-Charles Faugère,et al.  Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..

[20]  H. Michael Möller Systems of Algebraic Equations Solved by Means of Endomorphisms , 1993, AAECC.

[21]  H. Stetter,et al.  An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .

[22]  Fabrice Rouillier,et al.  Algorithmes efficaces pour l'etude des zeros reels des systemes polynomiaux , 1996 .

[23]  Jean-Paul Cardinal,et al.  Dualité et algorithmes itératifs pour la résolution de systèmes polynomiaux , 1993 .

[24]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[25]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[26]  Patrizia M. Gianni,et al.  Algebraic Solution of Systems of Polynomial Equations Using Groebner Bases , 1987, AAECC.

[27]  Jochem Fleischer,et al.  Computer Algebra in Science and Engineering , 1995 .

[28]  Teresa Krick,et al.  A computational method for diophantine approximation , 1996 .