Symbolic Recipes for Polynomial System Solving
暂无分享,去创建一个
Fabrice Rouillier | Marie-Françoise Roy | Laureano Gonzalez-Vega | Marie-Françoise Roy | F. Rouillier | L. González-Vega
[1] Marc Moreno Maza,et al. Calculs de pgcd au-dessus des tours d'extensions simples et resolution des systemes d'equations algebriques , 1997 .
[2] Patrizia M. Gianni,et al. Decomposition of Algebras , 1988, ISSAC.
[3] T. Wörmann,et al. Radical computations of zero-dimensional ideals and real root counting , 1996 .
[4] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[5] N. Bose. Multidimensional Systems Theory , 1985 .
[6] Robert M. Corless,et al. Gröbner bases and matrix eigenproblems , 1996, SIGS.
[7] B. Buchberger,et al. Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .
[8] Marie-Françoise Roy,et al. Zeros, multiplicities, and idempotents for zero-dimensional systems , 1996 .
[9] Maria Grazia Marinari,et al. The shape of the Shape Lemma , 1994, ISSAC '94.
[10] Michael Kalkbrener. Solving systems of algebraic equations by using Gröbner bases , 1987, EUROCAL.
[11] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[12] Bud Mishra,et al. Algorithmic Algebra , 1993, Texts and Monographs in Computer Science.
[13] Laureano González-Vega,et al. Using Symmetric Functions to Describe the Solution Set of a Zero Dimensional Ideal , 1995, AAECC.
[14] Kazuhiro Yokoyama,et al. Solutions of Systems of Algebraic Equations and Linear Maps on Residue Class Rings , 1992, J. Symb. Comput..
[15] Marie-Françoise Roy,et al. Counting real zeros in the multivariate case , 1993 .
[16] Patrizia M. Gianni,et al. Properties of Gröbner bases under specializations , 1987, EUROCAL.
[17] Marie-Françoise Roy,et al. Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula , 1996 .
[18] Y. N. Lakshman,et al. On the Complexity of Zero-dimensional Algebraic Systems , 1991 .
[19] Jean-Charles Faugère,et al. Efficient Computation of Zero-Dimensional Gröbner Bases by Change of Ordering , 1993, J. Symb. Comput..
[20] H. Michael Möller. Systems of Algebraic Equations Solved by Means of Endomorphisms , 1993, AAECC.
[21] H. Stetter,et al. An Elimination Algorithm for the Computation of All Zeros of a System of Multivariate Polynomial Equations , 1988 .
[22] Fabrice Rouillier,et al. Algorithmes efficaces pour l'etude des zeros reels des systemes polynomiaux , 1996 .
[23] Jean-Paul Cardinal,et al. Dualité et algorithmes itératifs pour la résolution de systèmes polynomiaux , 1993 .
[24] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[25] Heinz Kredel,et al. Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .
[26] Patrizia M. Gianni,et al. Algebraic Solution of Systems of Polynomial Equations Using Groebner Bases , 1987, AAECC.
[27] Jochem Fleischer,et al. Computer Algebra in Science and Engineering , 1995 .
[28] Teresa Krick,et al. A computational method for diophantine approximation , 1996 .