On the Evolutionary Fractional p-Laplacian

In this work existence results on nonlinear first order as well as doubly nonlinear second order evolution equations involving the fractional p-Laplacian are presented. The proofs do not exploit any monotonicity assumption but rely on a compactness argument in combination with regularity of the Galerkin scheme and the nonlocal character of the operator.

[1]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[2]  Juan Luis Vázquez,et al.  Nonlinear Diffusion with Fractional Laplacian Operators , 2012 .

[3]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[4]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[5]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[6]  V. Thomée,et al.  The stability in _{} and ¹_{} of the ₂-projection onto finite element function spaces , 1987 .

[7]  K. Rajagopal,et al.  On Kelvin-Voigt model and its generalizations , 2012 .

[8]  H. Amann,et al.  Ordinary Differential Equations: An Introduction to Nonlinear Analysis , 1990 .

[9]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[10]  Hans Engler,et al.  Global regular solutions for the dynamic antiplane shear problem in nonlinear viscoelasticity , 1989 .

[11]  Unione matematica italiana Lecture notes of the Unione matematica italiana , 2006 .

[12]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[13]  Yannick Sire,et al.  Nonlinear equations for fractional laplacians II: existence, uniqueness, and qualitative properties of solutions , 2011, 1111.0796.

[14]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[15]  Mats Boman Estimates for the L2-Projection onto Continuous Finite Element Spaces in a Weighted Lp-Norm , 2006 .

[16]  J. Lions,et al.  Problèmes aux limites non homogènes (VI) , 1963 .

[17]  T. Roubíček Nonlinear partial differential equations with applications , 2005 .

[18]  Luc Tartar,et al.  An Introduction to Navier-Stokes Equation and Oceanography , 2006 .

[19]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[20]  Jöran Bergh,et al.  Interpolation Spaces: An Introduction , 2011 .

[21]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[22]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[23]  Sophia Demoulini Weak Solutions for a Class of Nonlinear Systems of Viscoelasticity , 2000 .

[24]  Zhi-Ming Ma,et al.  BOUNDARY PROBLEMS FOR FRACTIONAL LAPLACIANS , 2005 .

[25]  Viorel Barbu,et al.  Differential equations in Banach spaces , 1976 .

[26]  J. Wloka,et al.  Partial differential equations: Strongly elliptic differential operators and the method of variations , 1987 .

[27]  Etienne Emmrich,et al.  Evolution equations of second order with nonconvex potential and linear damping: existence via convergence of a full discretization , 2013 .

[28]  Takayuki Kobayashi,et al.  On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity , 1993 .

[29]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[30]  N. S. Landkof Foundations of Modern Potential Theory , 1972 .

[31]  José M. Mazón,et al.  Nonlocal Diffusion Problems , 2010 .

[32]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[33]  H. Gajewski,et al.  Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen , 1974 .

[34]  Gero Friesecke,et al.  Implicit time discretization and global existence for a quasi-linear evolution equation with nonconvex energy , 1997 .

[35]  Avner Friedman,et al.  Systems of nonlinear wave equations with nonlinear viscosity. , 1988 .

[36]  Etienne Emmrich,et al.  Peridynamics: a nonlocal continuum theory. , 2013 .

[37]  Yannick Sire,et al.  Nonlinear equations for fractional Laplacians I: Regularity, maximum principles, and Hamiltonian estimates , 2010, 1012.0867.

[38]  Etienne Emmrich,et al.  Doubly nonlinear evolution equations of second order: Existence and fully discrete approximation , 2011 .

[39]  Etienne Emmrich,et al.  Measure-valued and weak solutions to the nonlinear peridynamic model in nonlocal elastodynamics , 2014 .

[40]  Andreas Prohl,et al.  Convergence of a Finite Element-Based Space-Time Discretization in Elastodynamics , 2008, SIAM J. Numer. Anal..

[41]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[42]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[43]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .