Chemical mechanical planarization for microelectronics applications

Abstract The progressively decreasing feature size of the circuit components has tremendously increased the need for the global surface planarization of the various thin film layers that constitute the integrated circuit (IC). Global planarization, being one of the major solutions to meet the demands of the industry, needs to be achieved following the most efficient polishing procedure. Chemical mechanical polishing (CMP) is the planarization method that has been selected by the semiconductor industry today. CMP, an ancient process used for glass polishing, was adopted first as a microelectronic fabrication process by IBM in the 80 s for SiO2 polishing. To achieve efficient planarization at miniaturized device dimensions, there is a need for a better understanding of the physics, chemistry and the complex interplay of tribo-mechanical phenomena occurring at the interface of the pad and wafer in presence of the fluid slurry medium. In spite of the fact that CMP research has grown by leaps and bounds, there are some teething problems associated with CMP process such as delamination, microscratches, dishing, erosion, corrosion, inefficient post-CMP clean, etc.; research on which is still developing. The fundamental understanding of the CMP is highly necessary to characterize, optimize and model the process. The CMP process is ready to make a positive impact on 30% of the US$ 135 billion global semiconductor market. This paper presents an overview of CMP process in general, the science and mechanism of polishing, different metal and dielectric CMP processes. The impact of consumables on the CMP process, post-CMP cleaning, modeling of different CMP processes as well as the future trends are also discussed.

[1]  Chang-Won Park,et al.  A chemical mechanical polishing model incorporating both the chemical and mechanical effects , 2003 .

[2]  J. G. Ryan,et al.  The evolution of interconnection technology at IBM , 1995, IBM J. Res. Dev..

[3]  Kihong Kim,et al.  Properties of low dielectric constant fluorinated silicon oxide films prepared by plasma enhanced chemical vapor deposition , 1998 .

[4]  Ronald J. Gutmann,et al.  Chemical Mechanical Planarization of Microelectronic Materials , 1997 .

[5]  Keiji Kobayashi Low polarization and low temperature reflow of inorganic borophosphosilicate glasses formed from organic sources , 2003 .

[6]  A. Philipossian,et al.  Effect of Pad Surface Texture and Slurry Abrasive Concentration on Tribological and Kinetic Attributes of ILD CMP , 2003 .

[7]  Karen Maex,et al.  Low-k dielectric materials , 2004 .

[8]  G. Burdick,et al.  Assessment of post-CMP cleaning mechanisms using statistically-designed experiments , 1998 .

[9]  Goodarz Ahmadi,et al.  Particle Adhesion and Removal in Chemical Mechanical Polishing and Post‐CMP Cleaning , 1999 .

[10]  Hakan Kuntman,et al.  A new study on spin-on-silica for multilevel interconnect applications , 1999 .

[11]  Keiji Kobayashi Improvement of polarizable capacitance—voltage curves of MOS capacitors passivated with BN-and PbF2-containing SiO2B2O3GeO2 glasses , 1997 .

[12]  Chris Rogers,et al.  Investigating Slurry Transport Beneath a Wafer during Chemical Mechanical Polishing Processes , 2000 .

[13]  M. Kröger,et al.  The Structure and Rheology of Complex Fluids , 2000 .

[15]  J. Gambino,et al.  Dry etch challenges of 0.25 /spl mu/m dual damascene structures , 1997, European Workshop Materials for Advanced Metallization,.

[16]  E. Bourgeat‐Lami,et al.  Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media , 1998, Journal of colloid and interface science.

[17]  H. Shiho,et al.  Copper and copper compounds as coatings onpolystyrene particles and as hollow spheres , 2000 .

[18]  H. Cui,et al.  Chemical Mechanical Polishing of Low Dielectric Constant Oxide Films Deposited Using Flowfill Chemical Vapor Deposition Technology , 2000 .

[19]  S. R. Runnels,et al.  Tribology Analysis of Chemical‐Mechanical Polishing , 1994 .

[20]  J. Barbera,et al.  Contact mechanics , 1999 .

[21]  R. Gutmann,et al.  A feature scale model for chemical mechanical planarization of damascene structures , 2004 .

[22]  Fang Wang,et al.  Study on the cleaning of silicon after CMP in ULSI , 2003 .

[23]  C. Yeh,et al.  Novel post CMP cleaning using buffered HF solution and ozone water , 2003 .

[24]  J. D. Luttmer,et al.  Chemical–mechanical polishing of SiOC organosilicate glasses: the effect of film carbon content , 2001 .

[25]  J. Warnock,et al.  A two-dimensional process model for chemimechanical polish planarization , 1991 .

[26]  Duane S. Boning,et al.  A Novel Statistical Metrology Framework for Identifying Sources of Variation in Oxide Chemical‐Mechanical Polishing , 1998 .

[27]  S. Seal,et al.  Mechanism of Copper Removal during CMP in Acidic H 2 O 2 Slurry , 2004 .

[28]  R. Larson The Structure and Rheology of Complex Fluids , 1998 .

[29]  M. S. Hwang,et al.  Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films , 2001 .

[30]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[31]  Minoru Tomozawa,et al.  The effect of the polishing pad treatments on the chemical-mechanical polishing of SiO2 films , 1995 .

[32]  Vimal Desai,et al.  Electrochemical characterization of copper chemical mechanical polishing , 2003 .

[33]  A. Busnaina,et al.  Post-CMP cleaning using acoustic streaming , 1998 .

[34]  Yong-Jin Seo,et al.  Signal analysis of the end point detection method based on motor current , 2003 .

[35]  S. Wolf,et al.  Silicon Processing for the VLSI Era , 1986 .

[36]  V.K. Tripathi,et al.  Analysis and modeling of multilevel parallel and crossing interconnection lines , 1987, IEEE Transactions on Electron Devices.

[37]  E. Matijević,et al.  Zirconium compounds as coatings on polystyrene latex and as hollow spheres , 1991 .

[38]  O. Kubaschewski,et al.  Oxidation of metals and alloys , 1953 .

[39]  R.W. Keyes,et al.  Fundamental limits in digital information processing , 1981, Proceedings of the IEEE.

[40]  Sadasivan Shankar,et al.  Three-dimensional wafer-scale copper chemical–mechanical planarization model , 2002 .

[41]  Seung H. Kang,et al.  Copper interconnects for semiconductor devices , 2001 .

[42]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[43]  Steven Danyluk,et al.  Contact Mechanics and Lubrication Hydrodynamics of Chemical Mechanical Polishing , 1999 .

[44]  Post cleaning of chemical mechanical polishing process , 1996 .

[45]  F. W. Preston The Theory and Design of Plate Glass Polishing Machines , 1927 .

[46]  Yong-Jin Seo,et al.  In-situ end point detection of the STI-CMP process using a high selectivity slurry , 2003 .

[47]  Lesile Glasser The chemistry of silica: By Ralph K. Iller. Pp. vii+ 866. Wiley, Chichester. 1979, £39.50 , 1980 .

[48]  R. F. Harrington,et al.  Losses on Multiconductor Transmission Lines in Multilayered Dielectric Media , 1984 .

[49]  Y. Obeng,et al.  Dynamic Mechanical Analysis (DMA) of CMP pad materials , 2000 .

[50]  Ronald J. Gutmann,et al.  Pad porosity, compressibility and slurry delivery effects in chemical- mechanical planarization: modeling and experiments , 2000 .

[51]  G. Bahar Basim,et al.  Fundamentals of Slurry Design for CMP of Metal and Dielectric Materials , 2002 .

[52]  Keizo Suzuki,et al.  Anisotropic etching of polycrystalline silicon with a hot Cl2 molecular beam , 1988 .

[53]  E. Bourgeat‐Lami,et al.  Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media. , 1998, Journal of colloid and interface science.

[54]  A. Sikder,et al.  Effects of Properties and Growth Parameters of Doped and Undoped Silicon Oxide Films on Wear Behavior During Chemical Mechanical Planarization Process , 2004 .

[55]  Y. Jeng,et al.  An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation , 2003 .

[56]  Cheng-Ching Yu,et al.  Operational Aspects of Chemical Mechanical Polishing Polish Pad Profile Optimization , 2000 .

[57]  Ronald A. Carpio,et al.  Initial study on copper CMP slurry chemistries , 1995 .

[58]  M. Köhler,et al.  Etching in Microsystem Technology , 1999 .

[59]  Y. H. Lee,et al.  Low dielectric fluorinated amorphous carbon thin films grown from C6F6 and Ar plasma , 2000 .

[60]  Cattien V. Nguyen,et al.  Determination of pore-size distribution in low-dielectric thin films , 2000 .

[61]  Gerry Byrne,et al.  Pad conditioning in chemical mechanical polishing , 2002 .

[62]  D. Hetherington,et al.  Atomic force microscopy, lateral force microscopy, and transmission electron microscopy investigations and adhesion force measurements for elucidation of tungsten removal mechanisms , 1999 .

[63]  K. Sundaram,et al.  Polishing mechanism of tantalum films by SiO 2 particles , 2003 .

[64]  Curtis Taylor,et al.  Investigation of ultralow-load nanoindentation for the patterning of nanostructures , 2002, SPIE Micro + Nano Materials, Devices, and Applications.

[65]  Roderick R. Kunz,et al.  Review of technology for 157-nm lithography , 2001, IBM J. Res. Dev..

[66]  Hong Liang,et al.  Wear phenomena in chemical mechanical polishing , 1997 .

[67]  Yeau-Ren Jeng,et al.  Tribological Analysis of CMP with Partial Asperity Contact , 2003 .

[68]  M. Esashi Encapsulated micro mechanical sensors , 1994 .

[69]  J. Anthony,et al.  Nano-indentation studies of xerogel and SiLK low-K dielectric materials , 2001 .

[70]  R. Gutmann,et al.  Chemical-Mechanical Planarization of Low-k Polymers for Advanced IC Structures , 2002 .

[71]  D. J. Pearson,et al.  Chemical‐Mechanical Polishing for Fabricating Patterned W Metal Features as Chip Interconnects , 1991 .

[72]  Masato Yoshida,et al.  Why abrasive free Cu slurry is promising , 2001 .

[73]  T. Page,et al.  Using the P-δ^2 analysis to deconvolute the nanoindentation response of hard-coated systems , 1999 .

[74]  H. Uhlig Oxidation of metals and alloys , 1954 .

[75]  E. Matijević,et al.  Preparation of hollow spherical particles of yttrium compounds , 1991 .

[76]  J. Steigerwald,et al.  Effect of Copper Ions in the Slurry on the Chemical‐Mechanical Polish Rate of Titanium , 1994 .

[77]  Hong Hocheng,et al.  Modeling and Experimental Analysis of the Material Removal Rate in the Chemical Mechanical Planarization of Dielectric Films and Bare Silicon Wafers , 2001 .

[78]  J. Amanokura,et al.  Development and Application of an Abrasive-Free Polishing Solution for Copper , 2002 .

[79]  G Liebmann,et al.  Solution of Partial Differential Equations with a Resistance Network Analogue , 1950 .

[80]  P. Woerlee,et al.  Dependency of dishing on polish time and slurry chemistry in Cu CMP , 2000 .

[81]  Egon Matijević,et al.  Chemistry of silica , 1980 .

[82]  Arun K. Sikder,et al.  Optimization of tribological properties of silicon dioxide during the chemical mechanical planarization process , 2001 .

[83]  G. Zwicker,et al.  A selective CMP process for stacked low- k CVD oxide films , 1999 .

[84]  M. Liang,et al.  Physical and Electrical Characteristics of F- and C-Doped Low Dielectric Constant Chemical Vapor Deposited Oxides , 2001 .

[85]  K. Drescher,et al.  Influence of process parameters on chemical-mechanical polishing of copper , 1998, European Workshop Materials for Advanced Metallization,.

[86]  Y. Obeng,et al.  Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces , 2002 .

[87]  Yuan Taur,et al.  CMOS scaling into the 21st century: 0.1 µm and beyond , 1995, IBM J. Res. Dev..

[88]  T. Merchant,et al.  Modeling and Characterization of Tungsten Chemical and Mechanical Polishing Processes , 2001 .

[89]  Ashok Kumar,et al.  Tribological Issues and Modeling of Removal Rate of Low-k Films in CMP , 2004 .

[90]  D. M. Knotter,et al.  Etching Mechanism of Vitreous Silicon Dioxide in HF-Based Solutions , 2000 .

[91]  I. Mizushima,et al.  Reflow of BeF2-B2O3-GeO2-SiO2 glasses and application of their membranes to metal-oxide-silicon (MOS) capacitors , 1996 .

[92]  Yaw S. Obeng,et al.  Applicability of dynamic mechanical analysis for CMP polyurethane pad studies , 2002 .

[94]  A. Muramatsu,et al.  Formation Mechanism of Monodisperse Pseudocubic α-Fe2O3 Particles from Condensed Ferric Hydroxide Gel , 1993 .

[95]  B. Hillebrands,et al.  Critical properties of nanoporous low dielectric constant films revealed by Brillouin light scattering and surface acoustic wave spectroscopy , 2002 .

[96]  H. Yano,et al.  High-performance CMP Slurry with Inorganic/Resin Abrasive for Al/Low k Damascene , 2001 .

[97]  W. I. Patterson Colorimetric Determination of Traces of Metals , 1946 .

[98]  P. Ho,et al.  Thermomechanical properties and moisture uptake characteristics of hydrogen silsesquioxane submicron films , 1999 .

[99]  H. Shiho,et al.  Iron Compounds as Coatings on Polystyrene Latex and as Hollow Spheres. , 2000, Journal of colloid and interface science.

[100]  G. Pharr Measurement of mechanical properties by ultra-low load indentation , 1998 .

[101]  A. Scott Lawing,et al.  Pad Conditioning and Pad Surface Characterization in Oxide Chemical Mechanical Polishing , 2002 .

[102]  David Dornfeld,et al.  Material removal mechanism in chemical mechanical polishing: theory and modeling , 2001 .

[103]  Ronald J. Gutmann,et al.  Chemical processes in the chemical mechanical polishing of copper , 1995 .

[104]  Yong-Jin Seo,et al.  Correlation analysis between pattern and non-pattern wafer for characterization of shallow trench isolation-chemical-mechanical polishing (STI-CMP) process , 2002 .

[105]  S. Babu,et al.  The use of monodispersed colloids in the polishing of copper and tantalum. , 2003, Journal of Colloid and Interface Science.

[106]  S. Runnels Feature‐Scale Fluid‐Based Erosion Modeling for Chemical‐Mechanical Polishing , 1994 .

[107]  Ronald J. Gutmann,et al.  Pattern Geometry Effects in the Chemical‐Mechanical Polishing of Inlaid Copper Structures , 1994 .

[108]  J. Steigerwald,et al.  Electrochemical Potential Measurements during the Chemical‐Mechanical Polishing of Copper Thin Films , 1995 .

[109]  Karen Maex,et al.  Low dielectric constant materials for microelectronics , 2003 .

[110]  A. Sikder,et al.  Mechanical and tribological properties of interlayer films for the damascene-Cu chemical-mechanical planarization process , 2002 .

[111]  Fan Zhang,et al.  The Role of Particle Adhesion and Surface Deformation in Chemical Mechanical Polishing Processes , 1999 .

[112]  Woon Kai Lin Proceedings Materials Research Society , 2005 .

[113]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[114]  Stephen P. Beaudoin,et al.  Describing Hydrodynamic Particle Removal from Surfaces Using the Particle Reynolds Number , 2001 .

[115]  Y. Jeng,et al.  Impact of Abrasive Particles on the Material Removal Rate in CMP A Microcontact Perspective , 2004 .

[116]  Stephan A. Cohen,et al.  Open volume defects (measured by positron annihilation spectroscopy) in thin film hydrogen-silsesquioxane spin-on-glass; correlation with dielectric constant , 1999 .

[117]  H. Shiho,et al.  Magnetic compounds as coatings on polymer particles and magnetic properties of the composite particles , 2000 .

[118]  H. Shiho,et al.  Titanium compounds as coatings on polystyrene latices and as hollow spheres , 2000 .

[119]  Frank G. Shi,et al.  Modeling of chemical-mechanical polishing with soft pads , 1998 .

[120]  W. Tseng,et al.  Chemical‐Mechanical Polishing and Material Characteristics of Plasma‐Enhanced Chemically Vapor Deposited Fluorinated Oxide Thin Films , 1997 .

[121]  Rajeev Bajaj,et al.  Advances in Chemical-Mechanical Planarization , 2002 .

[122]  David J. Stein,et al.  Investigation of the Kinetics of Tungsten Chemical Mechanical Polishing in Potassium Iodate‐Based Slurries: II. Roles of Colloid Species and Slurry Chemistry , 1999 .

[123]  Ronald J. Gutmann,et al.  Inverse analysis of material removal data using a multiscale CMP model , 2003 .

[124]  J. T. C. Lee,et al.  A comparison of HDP sources for polysilicon etching , 1996 .

[125]  D. Zeidler,et al.  Characterization of Cu chemical mechanical polishing by electrochemical investigations , 1997 .

[126]  T. F. Houghton,et al.  A four-level VLSI bipolar metallization design with chemical-mechanical planarization , 1992, IBM J. Res. Dev..

[127]  L. Cook Chemical processes in glass polishing , 1990 .

[128]  Alfred Grill,et al.  Ultralow-k dielectrics prepared by plasma-enhanced chemical vapor deposition , 2001 .

[129]  K. Kobayashi,et al.  Viscous Flow of ZnF2- and Si3N4-Containing Borosilicate Glasses and Their Applications to MOS Capacitors , 1998 .

[130]  B. Moudgil,et al.  Effect of Soft Agglomerates on CMP Slurry Performance , 2002 .

[131]  S. Beaudoin,et al.  Polishing Pad Surface Morphology and Chemical Mechanical Planarization , 2004 .

[132]  M. Ginic-Markovic,et al.  Characterization of elastomer compounds by thermal analysis , 1998 .

[133]  Woo-Sun Lee,et al.  An optimization of tungsten plug chemical mechanical polishing (CMP) using different consumables , 2001 .

[134]  So-Young Jeong,et al.  A study on the reproducibility of HSS STI-CMP process for ULSI applications , 2003 .

[135]  David Dornfeld,et al.  Optimization of CMP from the Viewpoint of Consumable Effects , 2003 .

[136]  Keiji Kobayashi Relationship Between Electronic Molar Polarizability and Super Low Dielectric Constant in B2O3-BeF2-C Glass Systems , 1998 .

[137]  S. Kondo,et al.  Abrasive-Free Polishing for Copper Damascene Interconnection , 2000 .

[138]  S. Yen,et al.  Localized corrosion effects and modifications of acidic and alkaline slurries on copper chemical mechanical polishing , 2003 .

[139]  Charles L. Standley,et al.  Application of Chemical Mechanical Polishing to the Fabrication of VLSI Circuit Interconnections , 1991 .

[140]  Hideaki Takahashi,et al.  Characteristics of Abrasive-Free Micelle Slurry for Copper CMP , 2003 .

[141]  Tetsuya Homma,et al.  Low dielectric constant materials and methods for interlayer dielectric films in ultralarge-scale integrated circuit multilevel interconnections , 1998 .

[142]  Frank Richter,et al.  Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results , 2001 .

[143]  S. P. Murarka,et al.  Metallization: Theory and practice for VLSI and ULSI , 1992 .

[144]  E. Paul,et al.  A Model of Chemical Mechanical Polishing , 2001 .

[145]  Novel polymeric surfactants for improving chemical mechanical polishing performance of silicon oxide , 2001 .

[146]  K. Maex,et al.  Process integration induced thermodesorption from SiO2/SiLK resin dielectric based interconnects , 1999 .

[147]  T. Kikkawa,et al.  Mechanical properties of periodic porous silica low-k films determined by the twin-transducer surface acoustic wave technique , 2003 .

[148]  Robert O. Miller,et al.  Chemical mechanical polishing in silicon processing , 2000 .

[149]  Y. Ein‐Eli,et al.  The Compatibility of Copper CMP Slurries with CMP Requirements , 2003 .

[150]  Levent Trabzon,et al.  Changes in material properties of low- k interlayer dielectric polymers induced by exposure to plasmas , 2003 .

[151]  Manfred Engelhardt,et al.  Electrical characterization of copper interconnects with end-of-roadmap feature sizes , 2003 .

[152]  E. Sandell Colorimetric Determination of Traces of Metals , 1944 .

[153]  Yongjin Guo,et al.  Pad effects on material-removal rate in chemical-mechanical planarization , 2002 .

[154]  D. A. Hansen,et al.  Chemical Mechanical Polishing of Al and SiO2 Thin Films: The Role of Consumables , 1999 .

[155]  J. Greenwood,et al.  Contact of nominally flat surfaces , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[156]  Chongmu Lee,et al.  Dry cleaning for metallic contaminants removal as the second cleaning process after the CMP process , 2001 .

[157]  G. Burdick,et al.  A Theoretical Analysis of Brush Scrubbing Following Chemical Mechanical Polishing , 2003 .

[158]  S. Danyluk,et al.  Fluid pressure and its effects on chemical mechanical polishing , 2002 .

[159]  Phillip C. Baker,et al.  Optical Polishing Of Metals , 1982, Optics & Photonics.

[160]  Goodarz Ahmadi,et al.  A Model for Mechanical Wear and Abrasive Particle Adhesion during the Chemical Mechanical Polishing Process , 2001 .

[161]  Uday Mahajan,et al.  Effect of Particle Size during Tungsten Chemical Mechanical Polishing , 1999 .

[162]  Y. Hayashi,et al.  Ammonium-Salt-Added Silica Slurry for the Chemical Mechanical Polishing of the Interlayer Dielectric Film Planarization in ULSI's , 1995 .

[163]  S. Babu,et al.  Chemical–mechanical polishing of copper in alkaline media , 1997 .

[164]  Woo-Sun Lee,et al.  Reduction of process defects using a modified set-up for chemical mechanical polishing equipment , 2003 .

[165]  Y. Ein‐Eli,et al.  Electrochemical Behavior of Copper in Conductive Peroxide Solutions , 2004 .

[166]  David M. Follstaedt,et al.  Finite-element modeling of nanoindentation , 1999 .

[167]  F. Klaessig,et al.  News from the M in CMP - Viscosity of CMP Slurries, a Constant? , 2003 .

[168]  Donald W. Schwendeman,et al.  Two‐Dimensional Wafer‐Scale Chemical Mechanical Planarization Models Based on Lubrication Theory and Mass Transport , 1999 .

[169]  Kenneth C. Cadien,et al.  Advances in Characterization of CMP Consumables , 2002 .

[170]  H. Gatzen,et al.  The application of chemical–mechanical polishing for planarizing a SU-8/permalloy combination used in MEMS devices , 2003 .

[171]  Ronald J. Gutmann,et al.  Three-Dimensional Chemical Mechanical Planarization Slurry Flow Model Based on Lubrication Theory , 2001 .

[172]  S. Yen,et al.  A study of copper chemical mechanical polishing in urea-hydrogen peroxide slurry by electrochemical impedance spectroscopy , 2003 .

[173]  D. Kwon,et al.  Micromechanical estimation of composite hardness using nanoindentation technique for thin-film coated system , 2000 .

[174]  A. Harris,et al.  Nanoindentation as a tool for characterising the mechanical properties of tribological transfer films , 2000 .

[175]  Charles W. Koburger,et al.  Integration of chemical-mechanical polishing into CMOS integrated circuit manufacturing , 1992 .

[176]  Bernard Fay,et al.  Advanced optical lithography development, from UV to EUV , 2002 .

[177]  Effects of Particle Concentration in CMP , 2001 .

[178]  John A. Adams,et al.  CMP CoO reduction: slurry reprocessing , 1997 .

[179]  W. Tseng,et al.  A Comparative Study on the Roles of Velocity in the Material Removal Rate during Chemical Mechanical Polishing , 1999 .

[180]  M. Pohl,et al.  The Importance of Particle Size to the Performance of Abrasive Particles in the CMP Process , 1996 .

[181]  Toru Takahashi,et al.  Methylsiloxane spin-on-glass films for low dielectric constant interlayer dielectrics , 2000 .

[182]  Joost J. Vlassak,et al.  A Contact-Mechanics Based Model for Dishing and Erosion in Chemical-Mechanical Polishing , 2001 .

[183]  T. Cale,et al.  Von Mises Stress in Chemical‐Mechanical Polishing Processes , 1997 .

[184]  Fundamental Studies on the Mechanisms of Oxide CMP , 2000 .

[185]  Leonard Borucki,et al.  Mathematical modeling of polish-rate decay in chemical-mechanical polishing , 2002 .

[186]  M. Haond,et al.  STI process steps for sub-quarter micron CMOS , 1998 .