Multispectrum analysis of the oxygen A-band.

Retrievals of atmospheric composition from near-infrared measurements require measurements of airmass to better than the desired precision of the composition. The oxygen bands are obvious choices to quantify airmass since the mixing ratio of oxygen is fixed over the full range of atmospheric conditions. The OCO-2 mission is currently retrieving carbon dioxide concentration using the oxygen A-band for airmass normalization. The 0.25% accuracy desired for the carbon dioxide concentration has pushed the required state-of-the-art for oxygen spectroscopy. To measure O2 A-band cross-sections with such accuracy through the full range of atmospheric pressure requires a sophisticated line-shape model (Rautian or Speed-Dependent Voigt) with line mixing (LM) and collision induced absorption (CIA). Models of each of these phenomena exist, however, this work presents an integrated self-consistent model developed to ensure the best accuracy. It is also important to consider multiple sources of spectroscopic data for such a study in order to improve the dynamic range of the model and to minimize effects of instrumentation and associated systematic errors. The techniques of Fourier Transform Spectroscopy (FTS) and Cavity Ring-Down Spectroscopy (CRDS) allow complimentary information for such an analysis. We utilize multispectrum fitting software to generate a comprehensive new database with improved accuracy based on these datasets. The extensive information will be made available as a multi-dimensional cross-section (ABSCO) table and the parameterization will be offered for inclusion in the HITRANonline database.

[1]  B. Drouin,et al.  High resolution spectral analysis of oxygen. IV. Energy levels, partition sums, band constants, RKR potentials, Franck-Condon factors involving the X³Σg⁻, a₁Δg and b¹Σg⁺ states. , 2014, The Journal of chemical physics.

[2]  Jean-Michel Hartmann,et al.  Efficient computation of some speed-dependent isolated line profiles , 2013 .

[3]  Jonathan Tennyson,et al.  A new relational database structure and online interface for the HITRAN database , 2013 .

[4]  Ben M. Elliott,et al.  High resolution spectral analysis of oxygen. III. Laboratory investigation of the airglow bands. , 2013, The Journal of chemical physics.

[5]  Jean-Luc Moncet,et al.  Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with IASI case studies , 2013 .

[6]  Xing Xu,et al.  The AME2016 atomic mass evaluation (II). Tables, graphs and references , 2012 .

[7]  Rebecca Castano,et al.  Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission , 2012 .

[8]  H. Müller,et al.  High resolution spectral analysis of oxygen. I. Isotopically invariant Dunham fit for the X(3)Σ(g)(-), a(1)Δ(g), b(1)Σ(g)(+) states. , 2012, The Journal of chemical physics.

[9]  H. Müller,et al.  High resolution spectral analysis of oxygen. II. Rotational spectra of a(1)Δ(g)  O2 isotopologues. , 2012, The Journal of chemical physics.

[10]  J. Hodges,et al.  Frequency-stabilized cavity ring-down spectroscopy measurements of line mixing and collision-induced absorption in the O2 A-band. , 2012, The Journal of chemical physics.

[11]  David A. Long,et al.  On spectroscopic models of the O2 A‐band and their impact upon atmospheric retrievals , 2012 .

[12]  J. Hodges,et al.  Measurement of H2O broadening of O2 A-band transitions and implications for atmospheric remote sensing. , 2012, The journal of physical chemistry. A.

[13]  Rebecca Castano,et al.  The ACOS CO 2 retrieval algorithm – Part II: Global X CO 2 data characterization , 2012 .

[14]  S. Boland,et al.  High precision atmospheric CO2 measurements from space: The design and implementation of OCO-2 , 2012, 2012 IEEE Aerospace Conference.

[15]  Shanshan Yu,et al.  O2 A-band line parameters to support atmospheric remote sensing. Part II: The rare isotopologues , 2011 .

[16]  Rebecca Castano,et al.  The ACOS CO 2 retrieval algorithm – Part 1: Description and validation against synthetic observations , 2011 .

[17]  W. J. van der Zande,et al.  The effect of collisions with nitrogen on absorption by oxygen in the A-band using cavity ring-down spectroscopy. , 2011 .

[18]  James B. Abshire,et al.  Calibration of the Total Carbon Column Observing Network using aircraft profile data , 2010 .

[19]  W. J. van der Zande,et al.  Line mixing and collision induced absorption in the oxygen A-band using cavity ring-down spectroscopy. , 2010, The Journal of chemical physics.

[20]  David A. Long,et al.  O2 A-band line parameters to support atmospheric remote sensing , 2010 .

[21]  J. Hodges,et al.  Line shapes and intensities of self-broadened O{sub 2} b {sup 1{Sigma}}{sub g}{sup +}({nu}=1)(leftarrow)X {sup 3{Sigma}}{sub g}{sup -}({nu}=0) band transitions measured by cavity ring-down spectroscopy , 2010 .

[22]  F. Lique Temperature dependence of the fine-structure resolved rate coefficients for collisions of O(2)(X(3)Sigma(g) (-)) with He. , 2010, The Journal of chemical physics.

[23]  Masakatsu Nakajima,et al.  Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. , 2009, Applied optics.

[24]  J. Hodges,et al.  Ultra-sensitive optical measurements of high-J transitions in the O2 A-band , 2009 .

[25]  H. Pickett,et al.  Laboratory measurements and theoretical calculations of O_2 A band electric quadrupole transitions , 2009 .

[26]  W. Stolte,et al.  Experimental and Theoretical Investigation of Molecular Field Effects by Polarization-resolved Resonant Inelastic X-ray Scattering , 2009 .

[27]  P. De Bièvre,et al.  Atomic weights of the elements. Review 2000 (IUPAC Technical Report) , 2009 .

[28]  M. Safronova,et al.  High-accuracy calculation of energies, lifetimes, hyperfine constants, multipole polarizabilities, and blackbody radiation shift inK39 , 2008 .

[29]  Jean-Michel Hartmann,et al.  An improved O2 A band absorption model and its consequences for retrievals of photon paths and surface pressures , 2008 .

[30]  Daniel Hurtmans,et al.  Nitrogen-broadened lineshapes in the oxygen A-band: Experimental results and theoretical calculations , 2008 .

[31]  D. Hurtmans,et al.  Spectroscopic lineshape study of the self-perturbed oxygen A-band , 2008 .

[32]  L. Brown,et al.  Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy , 2008 .

[33]  J. Hodges,et al.  High-Precision Pressure Shifting Measurement Technique Using Frequency-Stabilized Cavity Ring-Down Spectroscopy , 2008 .

[34]  Shepard A. Clough,et al.  Retrieving Liquid Wat0er Path and Precipitable Water Vapor From the Atmospheric Radiation Measurement (ARM) Microwave Radiometers , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[35]  Kendra L. Letchworth,et al.  RAPID AND ACCURATE CALCULATION OF THE VOIGT FUNCTION , 2007 .

[36]  Gesine Grosche,et al.  Transition frequencies of the D lines of ^3^9K, ^4^0K, and ^4^1K measured with a femtosecond laser frequency comb , 2006 .

[37]  Jean-Michel Hartmann,et al.  Line mixing and collision-induced absorption by oxygen in the A band: Laboratory measurements, model, and tools for atmospheric spectra computations , 2006 .

[38]  S. Falke,et al.  The transition frequencies of the D lines of 39K, 40K, and 41K measured with a femtosecond laser frequency comb , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[39]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[40]  Shepard A. Clough,et al.  Atmospheric radiative transfer modeling: a summary of the AER codes , 2005 .

[41]  Jean-Michel Hartmann,et al.  Spectra calculations in central and wing regions of CO , 2004 .

[42]  A. H. Wapstra,et al.  The AME2003 atomic mass evaluation . (II). Tables, graphs and references , 2003 .

[43]  A. F. Krupnov,et al.  Reinvestigation of pressure broadening parameters at 60-GHz band and single 118.75 GHz oxygen lines at room temperature , 2003 .

[44]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[45]  G. Wlodarczak,et al.  Lineshape study of the J =3←2 rotational transition of CO perturbed by N 2 and O 2 , 2000 .

[46]  Brown,et al.  Experimental Line Parameters of the Oxygen A Band at 760 nm. , 2000, Journal of molecular spectroscopy.

[47]  G. T. Fraser,et al.  Absolute intensities for the O2 1.27 μm continuum absorption , 1999 .

[48]  Richard C. M. Learner,et al.  PRECISE LINE PARAMETERS AND TRANSITION PROBABILITY OF THE ATMOSPHERIC A BAND OF MOLECULAR OXYGEN 16O2 , 1999 .

[49]  E. Wishnow,et al.  CRYOGENIC MULTIPLE REFLECTION ABSORPTION CELL AND FOURIER TRANSFORM SPECTROMETER SYSTEM FOR THE FAR INFRARED , 1999 .

[50]  R. Ciuryło SHAPES OF PRESSURE- AND DOPPLER-BROADENED SPECTRAL LINES IN THE CORE AND NEAR WINGS , 1998 .

[51]  V. M. Devi,et al.  A multispectrum nonlinear least squares fitting technique , 1995 .

[52]  H. Mäder,et al.  SPEED DEPENDENCE OF ROTATIONAL RELAXATION INDUCED BY FOREIGN GAS COLLISIONS : STUDIES ON CH3F BY MILLIMETER WAVE COHERENT TRANSIENTS , 1994 .

[53]  G. Millot,et al.  Coherent anti‐Stokes Raman spectroscopy study of collisional broadening in the O2–H2O Q branch , 1994 .

[54]  Herbert M. Pickett,et al.  The fitting and prediction of vibration-rotation spectra with spin interactions , 1991 .

[55]  A. S. Pine,et al.  N2 and air broadening in the fundamental bands of HF and HCl , 1987 .

[56]  P. Rosenkranz Shape of the 5 mm oxygen band in the atmosphere , 1975 .

[57]  R. Miller Rotational Line Intensities in 3 Σ + - 1 Σ + Electronic Transitions , 1970 .

[58]  F. Kasten,et al.  A new table and approximation formula for the relative optial air mass , 1964 .

[59]  R. F. Wallis,et al.  Influence of Vibration‐Rotation Interaction on Line Intensities in Vibration‐Rotation Bands of Diatomic Molecules , 1955 .

[60]  G. Lewis THE MAGNETISM OF OXYGEN AND THE MOLECULE O4 , 1924 .

[61]  V. M. Devi,et al.  An intensity study of the torsional bands of ethane at 35 µm , 2015 .

[62]  T. Bui Cavity Enhanced Spectroscopies for Applications of Remote Sensing, Chemical Kinetics and Detection of Radical Species , 2015 .

[63]  B. Drouin,et al.  Pressure broadening of oxygen by water , 2014 .

[64]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[65]  T. Coplen Atomic Weights of the Elements , 2003 .

[66]  V. Rich Personal communication , 1989, Nature.

[67]  H. Rabitz,et al.  Quantum number and energy scaling for nonreactive collisions , 1979 .