Parallel Preconditioning with Sparse Approximate Inverses

A parallel preconditioner is presented for the solution of general sparse linear systems of equations. A sparse approximate inverse is computed explicitly and then applied as a preconditioner to an iterative method. The computation of the preconditioner is inherently parallel, and its application only requires a matrix-vector product. The sparsity pattern of the approximate inverse is not imposed a priori but captured automatically. This keeps the amount of work and the number of nonzero entries in the preconditioner to a minimum. Rigorous bounds on the clustering of the eigenvalues and the singular values are derived for the preconditioned system, and the proximity of the approximate to the true inverse is estimated. An extensive set of test problems from scientific and industrial applications provides convincing evidence of the effectiveness of this approach.

[1]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[2]  Kathryn Turner,et al.  Efficient High Accuracy Solutions with GMRES(m) , 1992, SIAM J. Sci. Comput..

[3]  G. Golub,et al.  Iterative solution of linear systems , 1991, Acta Numerica.

[4]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[5]  Marcus J. Grote,et al.  Parallel preconditioning and approximation inverses on the Connection Machine , 1992, Proceedings Scalable High Performance Computing Conference SHPCC-92..

[6]  Edmond Chow,et al.  Approximate Inverse Preconditioners via Sparse-Sparse Iterations , 1998, SIAM J. Sci. Comput..

[7]  O. Axelsson Iterative solution methods , 1995 .

[8]  Y. Saad,et al.  Approximate inverse preconditioners for general sparse matrices , 1994 .

[9]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[10]  William F. Moss,et al.  Decay rates for inverses of band matrices , 1984 .

[11]  Roland W. Freund,et al.  Implementation details of the coupled QMR algorithm , 1992 .

[12]  A. Griewank,et al.  Approximate inverse preconditionings for sparse linear systems , 1992 .

[13]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[14]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..