Continued fraction Cantor sets, Hausdorff dimension, and functional analysis
暂无分享,去创建一个
[1] D. Mayer,et al. On the thermodynamic formalism for the gauss map , 1990 .
[2] Doug Hensley,et al. The distribution of badly approximable rationals and continuants with bounded digits, II , 1990 .
[3] Doug Hensley,et al. The Hausdorff dimensions of some continued fraction cantor sets , 1989 .
[4] D. Hensley. The distribution of badly approximable numbers and continuants with bounded digits , 1989 .
[5] D. Mayer,et al. On the relaxation time of Gauss's continued-fraction map I. The Hilbert space approach (Koopmanism) , 1987 .
[6] T. Cusick. Continuants with bounded digits—II , 1977 .
[7] Michael G. Crandall,et al. Bifurcation, perturbation of simple eigenvalues, itand linearized stability , 1973 .
[8] M. Kreĭn,et al. Introduction to the theory of linear nonselfadjoint operators , 1969 .
[9] A. Khintchine,et al. Zur metrischen Theorie der diophantischen Approximationen , 1926 .
[10] G. Roepstorff,et al. On the relaxation time of Gauss' continued-fraction map. II. The Banach space approach (transfer operator method) , 1988 .
[11] D. Hensley. A TRUNCATED GAUSS-KUZMIN LAW , 1988 .
[12] R. Bumby. Hausdorff dimension of sets arising in number theory , 1985 .
[13] E. Wirsing. On the theorem of Gauss-Kusmin-Lévy and a Frobenius-type theorem for function spaces , 1974 .
[14] V. Jarník,et al. Zur metrischen Theorie der diophantischen Approximationen , 1929 .