Classical and Bayesian estimation in log-logistic distribution under random censoring

This article deals with the classical and Bayesian estimation of the parameters of log-logistic distribution using random censorship model. The maximum likelihood estimators and the asymptotic confidence intervals based on observed Fisher information matrix of the parameters are derived. Bayes estimators of the parameters under generalized entropy loss function using independent gamma priors are obtained. For Bayesian computation, Tierney–Kadane’s approximation and Markov chain Monte Carlo (MCMC) methods are used. Also, the highest posterior credible intervals of the parameters based on MCMC method are constructed. A Monte Carlo simulation study is carried out to compare the behavior of various estimators developed in this article. Finally, a real data analysis is performed for illustration purposes.

[1]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[2]  Muhammad Aslam,et al.  Log-logistic distribution for survival data analysis using MCMC , 2016, SpringerPlus.

[3]  R. Calabria,et al.  Point estimation under asymmetric loss functions for left-truncated exponential samples , 1996 .

[4]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[5]  James A. Koziol,et al.  A Cramér-von Mises statistic for randomly censored data , 1976 .

[6]  Hare Krishna,et al.  On progressively first failure censored Lindley distribution , 2016, Comput. Stat..

[7]  M. E. Ghitany A compound Rayleigh survival model and its application to randomly censored data , 2001 .

[8]  Muhammad Aslam,et al.  Bayesian estimation for randomly censored generalized exponential distribution under asymmetric loss functions , 2013 .

[9]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[10]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[11]  Hare Krishna,et al.  Nakagami distribution as a reliability model under progressive censoring , 2017, Int. J. Syst. Assur. Eng. Manag..

[12]  Ming-Hui Chen,et al.  Monte Carlo Estimation of Bayesian Credible and HPD Intervals , 1999 .

[13]  Coşkun Kuş,et al.  ESTIMATION OF PARAMETERS OF THE LOGLOGISTIC DISTRIBUTION BASED ON PROGRESSIVE CENSORING USING THE EM ALGORITHM , 2006 .

[14]  Madhulika Dube,et al.  On Randomly Censored Generalized Inverted Exponential Distribution , 2016 .

[15]  H. Akaike A new look at the statistical model identification , 1974 .

[16]  B. Sriram,et al.  An economic reliability test plan: Log-logistic distribution , 2006 .

[17]  R. Kantam,et al.  Acceptance sampling based on life tests: Log-logistic model , 2001 .

[18]  Yincai Tang,et al.  Objective Bayesian Analysis for Log-logistic Distribution , 2016, Commun. Stat. Simul. Comput..

[19]  Zhenmin Chen,et al.  ESTIMATING THE SHAPE PARAMETER OF THE LOG-LOGISTIC DISTRIBUTION , 2006 .

[20]  Vivekanand,et al.  Estimation in Maxwell distribution with randomly censored data , 2015 .

[21]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[22]  N. Breslow,et al.  A Large Sample Study of the Life Table and Product Limit Estimates Under Random Censorship , 1974 .

[23]  Norbert K. Semmer,et al.  Taking the chance: Core self-evaluations predict relative gain in job resources following turnover , 2016, SpringerPlus.

[24]  Muhammad Aslam,et al.  Bayesian inference for the randomly censored Weibull distribution , 2014 .

[25]  B. Arnold,et al.  Bayesian inference for pareto populations , 1983 .

[26]  Hare Krishna,et al.  Estimation of P(Y < X) in Lindley distribution using progressively first failure censoring , 2015, Int. J. Syst. Assur. Eng. Manag..

[27]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[28]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[29]  J. Lawless Statistical Models and Methods for Lifetime Data , 2002 .

[30]  Abdelkader Ameraoui,et al.  Bayesian estimation of the tail index of a heavy tailed distribution under random censoring , 2016, Comput. Stat. Data Anal..

[31]  Muhammad Saleem,et al.  ON BAYESIAN ANALYSIS OF THE RAYLEIGH SURVIVAL TIME ASSUMING THE RANDOM CENSOR TIME , 2009 .

[32]  G. S. Mudholkar,et al.  A Generalization of the Weibull Distribution with Application to the Analysis of Survival Data , 1996 .

[33]  H. Krishna,et al.  Classical and Bayesian inference in two parameter exponential distribution with randomly censored data , 2017, Computational Statistics.