A Backlund transformation and the inverse scattering transform method for the generalised Vakhnenko equation

A Backlund transformation both in bilinear and in ordinary form for the transformed generalised Vakhnenko equation (GVE) is derived. It is shown that the equation has an infinite sequence of conservation laws. An inverse scattering problem is formulated; it has a third-order eigenvalue problem. A procedure for finding the exact N-soliton solution to the GVE via the inverse scattering method is described. The procedure is illustrated by considering the cases N=1 and 2.

[1]  E. Parkes,et al.  The N-soliton solution of a generalised Vakhnenko equation , 2001, Glasgow Mathematical Journal.

[2]  Kimiaki Konno,et al.  A Loop Soliton Propagating along a Stretched Rope , 1981 .

[3]  C. W. Horton,et al.  Long-time prediction in dynamics , 1983 .

[4]  M. Wadati,et al.  Nonlinear Transverse Oscillation of Elastic Beams under Tension , 1981 .

[5]  V A Vakhnenko,et al.  Solitons in a nonlinear model medium , 1992 .

[6]  P. Caudrey,et al.  The inverse problem for the third order equation uxxx + q(x)ux + r(x)u = −iζ3u , 1980 .

[7]  A. Walker,et al.  Localized Buckling as Statical Homoclinic Soliton and Spacial Complexity , 1990 .

[8]  P. Caudrey The inverse problem for a general N × N spectral equation , 1982 .

[9]  Toru Shimizu,et al.  Cusp Soliton of a New Integrable Nonlinear Evolution Equation , 1980 .

[10]  E. J. Parkes,et al.  The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method , 2002 .

[11]  David J. Kaup,et al.  On the Inverse Scattering Problem for Cubic Eigenvalue Problems of the Class ψxxx + 6Qψx + 6Rψ = λψ , 1980 .

[12]  V. O. Vakhnenko High-frequency soliton-like waves in a relaxing medium , 1999 .

[13]  R. Hirota Direct Methods in Soliton Theory (非線形現象の取扱いとその物理的課題に関する研究会報告) , 1976 .

[14]  David J. Kaup,et al.  A Bäcklund Transformation for a Higher Order Korteweg-De Vries Equation , 1977 .

[15]  E. J. Parkes,et al.  The N-soliton solution of the modified generalised Vakhnenko equation (a new nonlinear evolution equation) , 2003 .

[16]  C. Qu,et al.  On affine Sawada–Kotera equation , 2003 .

[17]  Y. Ishimori On the Modified Korteweg-de Vries Soliton and the Loop Soliton , 1981 .

[18]  E J Parkes,et al.  The two loop soliton solution of the Vakhnenko equation , 1998 .

[19]  L. Debnath Advances in nonlinear waves , 1984 .

[20]  L. Dmitrieva N-loop solitons and their link with the complex Harry Dym equation , 1994 .

[21]  K. Konno,et al.  Loop Soliton Solutions of String Interacting with External Field , 1999 .

[22]  C. Rogers,et al.  On Reciprocal Bäcklund Transformations of Inverse Scattering Schemes , 1984 .

[23]  Kimiaki Konno,et al.  New Integrable Nonlinear Evolution Equations , 1979 .

[24]  K. Konno,et al.  Soliton on thin vortex filament , 1990 .

[25]  M. Wadati,et al.  Relationships among Inverse Method, Bäcklund Transformation and an Infinite Number of Conservation Laws , 1975 .

[26]  Junkichi Satsuma,et al.  Higher Conservation Laws for the Korteweg-de Vries Equation through Bäcklund Transformation , 1974 .

[27]  J. M. T. Thompson,et al.  Nonlinear dynamics of engineering systems , 1990 .

[28]  R. Hirota,et al.  N-Soliton Solutions of Model Equations for Shallow Water Waves , 1976 .

[29]  M. Wadati,et al.  A New Integrable Nonlinear Evolution Equation , 1980 .

[30]  E. Parkes,et al.  THE VAKHNENKO EQUATION FROM THE VIEWPOINT OF THE INVERSE SCATTERING METHOD FOR THE KdV EQUATION , 2000 .

[31]  Micheline Musette,et al.  Algorithmic method for deriving Lax pairs from the invariant Painlevé analysis of nonlinear partial differential equations , 1991 .

[32]  M. Wadati,et al.  Curve Lengthening Equation and Its Solutions , 1994 .

[33]  Ryogo Hirota,et al.  A Variety of Nonlinear Network Equations Generated from the Bäcklund Transformation for the Toda Lattice , 1976 .

[34]  Ryogo Hirota,et al.  A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .