Tree-graded spaces and asymptotic cones of groups

Abstract We introduce a concept of tree-graded metric space and we use it to show quasi-isometry invariance of certain classes of relatively hyperbolic groups, to obtain a characterization of relatively hyperbolic groups in terms of their asymptotic cones, to find geometric properties of Cayley graphs of relatively hyperbolic groups, and to construct the first example of a finitely generated group with a continuum of non- π 1 -equivalent asymptotic cones. Note that by a result of Kramer, Shelah, Tent and Thomas, continuum is the maximal possible number of different asymptotic cones of a finitely generated group, provided that the Continuum Hypothesis is true.

[1]  A. Yaman,et al.  A topological characterisation of relatively hyperbolic groups , 2004 .

[2]  R. Ho Algebraic Topology , 2022 .

[3]  W. Hodges CLASSIFICATION THEORY AND THE NUMBER OF NON‐ISOMORPHIC MODELS , 1980 .

[4]  Brian H. Bowditch,et al.  Intersection numbers and the hyperbolicity of the curve complex , 2006 .

[5]  G. Grisetti,et al.  Further Reading , 1984, IEEE Spectrum.

[6]  François Dahmani Les groupes relativement hyperboliques et leurs bords , 2003 .

[7]  P. Pansu Croissance des boules et des géodésiques fermées dans les nilvariétés , 1983, Ergodic Theory and Dynamical Systems.

[8]  R. Schwartz The quasi-isometry classification of rank one lattices , 1995 .

[9]  G. Bancerek Introduction to Trees , 1989 .

[10]  Iosif Polterovich,et al.  Explicit constructions of universal R-trees and asymptotic geometry of hyperbolic spaces , 1999 .

[11]  Peter M. Neumann,et al.  Relations related to betweenness : their structure and automorphisms , 1998 .

[12]  Asymptotic cones of finitely presented groups , 2003, math/0306420.

[13]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[14]  Z. Sela,et al.  Canonical representatives and equations in hyperbolic groups , 1995 .

[15]  Charles F. Miller,et al.  Combinatorial Group Theory , 2002 .

[16]  Robert J. Zimmer,et al.  Kazhdan’s Property (T) , 1984 .

[17]  A. Hart The University of Utah , 1986 .

[18]  T. Delzant Sous-groupes distingués et quotients des groupes hyperboliques , 1996 .

[19]  M. Kapovich,et al.  Quasi-isometries preserve the geometric decomposition of Haken manifolds , 1997 .

[20]  Marek Bożejko Uniformly amenable discrete groups , 1980 .

[21]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[22]  Alex Wilkie,et al.  Gromov's theorem on groups of polynomial growth and elementary logic , 1984 .

[23]  A. Olshanskii The SQ-universality of hyperbolic groups , 1995 .

[24]  Combination of convergence groups , 2002, math/0203258.

[25]  A. O. Houcine On hyperbolic groups , 2006 .

[26]  Structures at infinity of hyperbolic spaces and universal R-trees , 1999 .

[27]  Fundamental groups of asymptotic cones , 2004, math/0404111.

[28]  T. Riley Higher connectedness of asymptotic cones , 2003 .

[29]  Brian H. Bowditch,et al.  Treelike structures arising from continua and convergence groups , 1999 .

[30]  J. Kieran,et al.  Introduction to Trees , 1960 .

[31]  Katrin Tent,et al.  Asymptotic cones and ultrapowers of Lie groups , 2004, Bull. Symb. Log..

[32]  M. Kapovich,et al.  On asymptotic cones and quasi-isometry classes of fundamental groups of 3-manifolds , 1995 .

[33]  G. Keller Amenable groups and varieties of groups , 1972 .

[34]  J. Wysoczánski On uniformly amenable groups , 1988 .

[35]  Asymptotic Cones of Finitely Generated Groups , 2000 .

[36]  REMPLISSAGE DANS DES RESEAUX DE Q-RANG 1 ET DANS DES GROUPES RESOLUBLES , 1998 .

[37]  M. Gromov Groups of polynomial growth and expanding maps , 1981 .

[38]  Quasi-isometric classification of non-uniform lattices in semisimple groups of higher rank , 2000 .

[39]  Private Communications , 2001 .

[40]  B. Kleiner,et al.  Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings , 1997 .

[41]  Mikhael Gromov Structures métriques pour les variétés riemanniennes , 1981 .

[42]  Some geometric groups with Rapid Decay , 2003, math/0310356.

[43]  M. Kapovich,et al.  3-manifold Groups and Nonpositive Curvature , 1998 .

[44]  Cornelia Drutu Quasi-Isometry Invariants and Asymptotic Cones , 2002, Int. J. Algebra Comput..

[45]  P. Papasoglu On the asymptotic cone of groups satisfying a quadratic isoperimetric inequality , 1996 .

[46]  Graham A. Niblo,et al.  Asymptotic invariants of infinite groups , 1993 .

[47]  Jean-Camille Birget,et al.  Isoperimetric and isodiametric functions of groups , 1998 .

[48]  Quasi-isometries between groups with infinitely many ends , 2002, math/0405274.