Knowledge Packets and Knowledge Packet Structures

One of the most challenging tasks in knowledge representation for text-understanding systems is the development of large-scale knowledge bases containing semantic background knowledge. Many current knowledge-based systems restrict their applicational scope to narrow world domains, that is, they are equipped to handle domain-specific tasks by using domain-specific facts and rules. However, for the domain of text understanding this restriction appears to be unacceptable since the understanding of naturallanguage texts draws on a large background of diverse world knowledge and belief. Even if a knowledgebased system could be provided with a large body of world knowledge sufficiently rich to cover a broader domain of discourse, the problem of using this knowledge to build and utilize representations for natural language inputs might prove a serious one with respect to computational resources.

[1]  D. L. Parnas,et al.  On the criteria to be used in decomposing systems into modules , 1972, Software Pioneers.

[2]  Allen Newell,et al.  Human Problem Solving. , 1973 .

[3]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[4]  Robert A. Kowalski,et al.  A Proof Procedure Using Connection Graphs , 1975, JACM.

[5]  Edward A. Feigenbaum,et al.  The Art of Artificial Intelligence: Themes and Case Studies of Knowledge Engineering , 1977, IJCAI.

[6]  Gary G. Hendrix,et al.  Encoding Knowledge in Partitioned Networks , 1979 .

[7]  Allen Newell,et al.  The Knowledge Level , 1989, Artif. Intell..

[8]  J. Fodor The Modularity of mind. An essay on faculty psychology , 1986 .

[9]  Larry Wos,et al.  Automated Reasoning: Introduction and Applications , 1984 .

[10]  Hector J. Levesque,et al.  Knowledge Level Interfaces to Information Systems , 1986, On Knowledge Base Management Systems.

[11]  Ipke Wachsmuth LAKOS - ein Modell der Wissensrepräsentation zur Erklärung kognitiven Verhaltens , 1985 .

[12]  Richard Lesh,et al.  Selected results from the rational number project , 1985 .

[13]  Kathleen Dahlgren,et al.  The Cognitive Structure of Social Categories , 1985, Cogn. Sci..

[14]  Helmar Gust Strukturiertes Wissen als Grundlage für Sprachverstehensprozesse , 1986, LDV Forum.

[15]  Candace L. Sidner,et al.  Attention, Intentions, and the Structure of Discourse , 1986, CL.

[16]  Ipke Wachsmuth On Structuring Domain-Specific Knowledge , 1987, LILOG-Report.

[17]  Jay L. Garfield,et al.  Modularity in Knowledge Representation and Natural-Language Understanding , 1987 .

[18]  Douglas B. Lenat,et al.  On the thresholds of knowledge , 1987, Proceedings of the International Workshop on Artificial Intelligence for Industrial Applications.

[19]  Vladimir Lifschitz,et al.  Benchmark Problems for Formal Non-Monotonic Reasoning, Version 2.00 , 1988, NMR.

[20]  Ipke Wachsmuth,et al.  Zur intelligenten Organisation von Wissensbeständen in künstlichen Systemen , 1989, IWBS Report.

[21]  Ipke Wachsmuth Modularisierung wissensbasierter Systeme - MOSYS: Rahmenentwurf für ein Forschungsprogramm im Bereich wissensbasierte Systeme / künstliche Intelligenz , 1989 .

[22]  David S. Prerau,et al.  Maintainability techniques in developing large expert systems , 1990, IEEE Expert.

[23]  Ipke Wachsmuth,et al.  Addressing the retrieval problem in large knowledge bases: [Proceedings] Computational Intelligence 90 , 1990 .

[24]  Manfred Nagl,et al.  Softwaretechnik - methodisches Programmieren im Großen , 1990, Springer Compass.

[25]  Udo Pletat Modularizing Knowledge in LILOG , 1991, IWBS Report.

[26]  Ipke Wachsmuth,et al.  Antwortgenerierung, flexible Wortwahl und elaborative Inferenzen - ein Regelinventar für LEU/2 , 1992, Ontologie und Axiomatik der Wissensbasis von LILOG.