Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca

A number of higher order association areas have been described in the parietal and temporal cortex of large‐brained anthropoid primates such as Macaca. However, little is known about the evolution of these areas, and the existence of homologous areas has not yet been clearly demonstrated in other mammalian groups. We addressed this issue by comparing the myelo‐ and cytoarchitecture of posterior association cortex in the anthropoid Macaca to that of the small‐brained, strepsirhine (“prosimian”) primate Galag.

[1]  E. Vaadia,et al.  Unit study of monkey frontal cortex: active localization of auditory and of visual stimuli. , 1986, Journal of neurophysiology.

[2]  J. Kaas The organization of neocortex in mammals: implications for theories of brain function. , 1987, Annual review of psychology.

[3]  John H. R. Maunsell,et al.  Visual processing in monkey extrastriate cortex. , 1987, Annual review of neuroscience.

[4]  R. Desimone,et al.  Prestriate afferents to inferior temporal cortex: an HRP study , 1980, Brain Research.

[5]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[6]  Leslie G. Ungerleider,et al.  Projections to the superior temporal sulcus from the central and peripheral field representations of V1 and V2 , 1986, The Journal of comparative neurology.

[7]  R. Martin Primate origins and evolution , 1990 .

[8]  W. E. Le Gros Clark,et al.  THE STRUCTURE AND CONNECTIONS OF THE THALAMUS , 1932 .

[9]  P. Goldman-Rakic,et al.  Connections of the ventral granular frontal cortex of macaques with perisylvian premotor and somatosensory areas: Anatomical evidence for somatic representation in primate frontal association cortex , 1989, The Journal of comparative neurology.

[10]  C. Gross,et al.  Visual topography of V2 in the macaque , 1981, The Journal of comparative neurology.

[11]  David P. Friedman,et al.  Cortical connections of the somatosensory fields of the lateral sulcus of macaques: Evidence for a corticolimbic pathway for touch , 1986, The Journal of comparative neurology.

[12]  K. Kawamura,et al.  Corticocortical projections to the prefrontal cortex in the rhesus monkey investigated with horseradish peroxidase techniques , 1984, Neuroscience Research.

[13]  K Zilles,et al.  Quantitative cytoarchitectonics of the posterior cingulate cortex in primates , 1986, The Journal of comparative neurology.

[14]  R E Weller,et al.  Cortical projections of the dorsolateral visual area in owl monkeys: The prestriate relay to inferior temporal cortex , 1985, The Journal of comparative neurology.

[15]  D. Amaral,et al.  The entorhinal cortex of the monkey: I. Cytoarchitectonic organization , 1987, The Journal of comparative neurology.

[16]  M. Mishkin A memory system in the monkey. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[17]  P. Goldman-Rakic,et al.  Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey , 1984, Neuroscience.

[18]  Elisabeth A. Murray,et al.  Supplementary Sensory Area , 1981 .

[19]  B. Kolb,et al.  Behavioural and anatomical studies of the posterior parietal cortex in the rat , 1987, Behavioural Brain Research.

[20]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[21]  J. Kaas,et al.  Microelectrode maps, myeloarchitecture, and cortical connections of three somatotopically organized representations of the body surface in the parietal cortex of squirrels , 1986, The Journal of comparative neurology.

[22]  I. T. Diamond,et al.  Behavioral study of the visual cortex of Galago senegalensis. , 1975, Journal of comparative and physiological psychology.

[23]  D. Raczkowski,et al.  Projections from the superior colliculus and the neocortex to the pulvinar nucleus in Galago , 1981, The Journal of comparative neurology.

[24]  T. Imig,et al.  Organization of auditory cortex in the owl monkey (Aotus trivirgatus) , 1977, The Journal of comparative neurology.

[25]  T. Yin,et al.  Subcortical projections of the inferior parietal cortex (area 7) in the stump‐tailed monkey , 1984, The Journal of comparative neurology.

[26]  J. Kaas,et al.  Cortical and subcortical projections of the middle temporal area (MT) and adjacent cortex in galagos , 1982, The Journal of comparative neurology.

[27]  J. Kaas,et al.  Representation of the visual field on the medial wall of occipital-parietal cortex in the owl monkey. , 1976, Science.

[28]  M. Sur,et al.  Representations of the body surface in postcentral parietal cortex of Macaca fascicularis , 1980, The Journal of comparative neurology.

[29]  P. Goldman-Rakic,et al.  Myelo‐ and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[30]  Goldman-Rakic Ps,et al.  Motor control function of the prefrontal cortex. , 1987 .

[31]  J. Trojanowski,et al.  Areal and laminar distribution of some pulvinar cortical efferents in rhesus monkey , 1976, The Journal of comparative neurology.

[32]  H. Burton,et al.  The posterior thalamic region and its cortical projection in new world and old world monkeys , 1976, The Journal of comparative neurology.

[33]  R. Desimone,et al.  Visual areas in the temporal cortex of the macaque , 1979, Brain Research.

[34]  D L Rosene,et al.  Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents , 1987, The Journal of comparative neurology.

[35]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[36]  J M Allman,et al.  The middle temporal visual area(MT)in the bushbaby, Galago senegalensis. , 1973, Brain research.

[37]  W. C. Hall,et al.  Evolution of the Pulvinar (Part 1 of 2) , 1972 .

[38]  D. Pandya,et al.  Corticothalamic connections of the posterior parietal cortex in the rhesus monkey , 1985, The Journal of comparative neurology.

[39]  J. Gurche Early Primate Brain Evolution , 1982 .

[40]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[41]  Elisabeth A. Murray,et al.  Supplementary Sensory Area The Medial Parietal Cortex in the Monkey , 1981 .

[42]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[43]  C. Welt,et al.  Somatic sensory cortex (SmI) of the prosimian primate Galago crassicaudatus: Organization of mechanoreceptive input from the hand in relation to cytoarchitecture , 1980, The Journal of comparative neurology.

[44]  D. Pandya,et al.  Projections to the frontal cortex from the posterior parietal region in the rhesus monkey , 1984, The Journal of comparative neurology.

[45]  R. Andersen,et al.  The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: Divergent cortical projections from cell clusters in the medial pulvinar nucleus , 1985, The Journal of comparative neurology.

[46]  H Burton,et al.  Second somatic sensory cortical area (sii) in a prosimian primate, galago crassicaudatus , 1986, The Journal of comparative neurology.

[47]  John F. Brugge,et al.  Auditory Cortical Areas in Primates , 1982 .

[48]  R. Andersen Visual and eye movement functions of the posterior parietal cortex. , 1989, Annual review of neuroscience.

[49]  A M Galaburda,et al.  The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey , 1983, The Journal of comparative neurology.

[50]  E. Rolls,et al.  Functional subdivisions of the temporal lobe neocortex , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  J. Kaas,et al.  Representation of the body surface in somatic koniocortex in the prosimian Galago , 1980, The Journal of comparative neurology.

[52]  W. Welker,et al.  Microelectrode mapping of modality-specific somatic sensory cerebral neocortex in slow loris. , 1976, Brain, behavior and evolution.

[53]  J. Kaas,et al.  Connections of area 2 of somatosensory cortex with the anterior pulvinar and subdivisions of the ventroposterior complex in macaque monkeys , 1985, The Journal of comparative neurology.

[54]  W T Newsome,et al.  Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago senegalensis , 1980, The Journal of comparative neurology.

[55]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[56]  M. Azuma,et al.  Properties and distribution of auditory neurons in the dorsolateral prefrontal cortex of the alert monkey , 1984, Brain Research.

[57]  R E Weller,et al.  Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys , 1984, The Journal of comparative neurology.

[58]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[59]  L. Swanson The hippocampus — new anatomical insights , 1979, Trends in Neurosciences.

[60]  Harold Burton,et al.  Second Somatosensory Cortex and Related Areas , 1986 .

[61]  J. Allman Reconstructing the Evolution of the Brain in Primates Through the Use of Comparative Neurophysiological and Neuroanatomical Data , 1982 .

[62]  D. Fitzpatrick,et al.  Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus , 1985, The Journal of comparative neurology.

[63]  M. Merzenich,et al.  Representation of the cochlear partition of the superior temporal plane of the macaque monkey. , 1973, Brain research.

[64]  P. Goldman-Rakic,et al.  Ipsilateral cortical connections of granular frontal cortex in the strepsirhine primate Galago, with comparative comments on anthropoid primates , 1991, The Journal of comparative neurology.

[65]  P. Goldman-Rakic Topography of cognition: parallel distributed networks in primate association cortex. , 1988, Annual review of neuroscience.

[66]  J. Kaas,et al.  The somatotopic organization of area 2 in macaque monkeys , 1985, The Journal of comparative neurology.

[67]  G. Pariente Chapter 10 – The Role of Vision in Prosimian Behavior , 1979 .

[68]  Deepak N. Pandya,et al.  Role of Architectonics and Connections in the Study of Primate Brain Evolution , 1982 .

[69]  A. Schleicher,et al.  Comparative aspects of the primate posterior cingulate cortex , 1986, The Journal of comparative neurology.

[70]  G. Bonin,et al.  The neocortex of Macaca mulatta , 1947 .

[71]  D. Pandya,et al.  Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey , 1988, The Journal of comparative neurology.

[72]  J. Allman,et al.  The dorsal third tier area inGalago senegalensis , 1979, Brain Research.

[73]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[74]  D. Pandya,et al.  Converging visual and somatic sensory cortical input to the intraparietal sulcus of the rhesus monkey , 1980, Brain Research.

[75]  C. R. Olson,et al.  Cortical and subcortical afferent connections of a posterior division of feline area 7 (Area 7p) , 1987, The Journal of comparative neurology.

[76]  E. G. Jones,et al.  Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys , 1978, The Journal of comparative neurology.

[77]  W. C. Hall,et al.  The pulvinar nucleus of Galago senegalensis , 1975, The Journal of comparative neurology.

[78]  M. Mesulam,et al.  Insula of the old world monkey. Architectonics in the insulo‐orbito‐temporal component of the paralimbic brain , 1982, The Journal of comparative neurology.

[79]  D. Raczkowski,et al.  Cortical connections of the pulvinar nucleus in Galago , 1980, The Journal of comparative neurology.

[80]  K. A. Fitzpatrick,et al.  Organization of the hand area in the primary somatic sensory cortex (SmI) of the prosimian primate, Nycticebus coucang , 1982, The Journal of comparative neurology.

[81]  R E Weller,et al.  Subdivisions and connections of inferior temporal cortex in owl monkeys , 1987, The Journal of comparative neurology.

[82]  D. Pandya,et al.  Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey , 1978, Brain Research.

[83]  L A Krubitzer,et al.  The organization and connections of somatosensory cortex in marmosets , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[84]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[85]  G. Rizzolatti,et al.  Afferent and efferent projections of the inferior area 6 in the macaque monkey , 1986, The Journal of comparative neurology.

[86]  Deepak N. Pandya,et al.  Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents , 1975, Brain Research.

[87]  D. Pandya,et al.  Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey , 1982, The Journal of comparative neurology.

[88]  C. Welt,et al.  The Somatic Sensory Cortex , 1981 .

[89]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.