Prediction of Weyl semimetal in orthorhombicMoTe2

We investigate the orthorhombic phase $({T}_{d})$ of the layered transition-metal dichalcogenide ${\mathrm{MoTe}}_{2}$ as a Weyl semimetal candidate. ${\mathrm{MoTe}}_{2}$ exhibits four pairs of Weyl points lying slightly above $(\ensuremath{\sim}6\phantom{\rule{0.16em}{0ex}}\mathrm{meV})$ the Fermi energy in the bulk band structure. Different from its cousin ${\mathrm{WTe}}_{2}$, which was recently predicted to be a type-II Weyl semimetal, the spacing between each pair of Weyl points is found to be as large as 4% of the reciprocal lattice in ${\mathrm{MoTe}}_{2}$ (six times larger than that of ${\mathrm{WTe}}_{2}$). When projected onto the surface, the Weyl points are connected by Fermi arcs, which can be easily accessed by angle-resolved photoemission spectroscopy due to the large Weyl point separation. In addition, we show that the correlation effect or strain can drive ${\mathrm{MoTe}}_{2}$ from a type-II to a type-I Weyl semimetal.

[1]  X. Dai,et al.  Observation of Weyl nodes and Fermi arcs in TaP , 2016 .

[2]  C. Felser,et al.  Erratum: Weyl semimetal phase in the non-centrosymmetric compound TaAs , 2015, Nature Physics.

[3]  C. Felser,et al.  Large and unsaturated negative magnetoresistance induced by the chiral anomaly in the Weyl semimetal TaP , 2015 .

[4]  Su-Yang Xu,et al.  A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class , 2015, Nature Communications.

[5]  Zhu-An Xu,et al.  Chiral anomaly induced negative magnetoresistance in topological Weyl semimetal NbAs , 2015, 1506.03190.

[6]  Zhu-An Xu,et al.  Helicity protected ultrahigh mobility Weyl fermions in NbP , 2015, 1506.00924.

[7]  Cheng Zhang,et al.  Detection of chiral anomaly and valley transport in Dirac semimetals , 2015 .

[8]  Su-Yang Xu,et al.  Observation of the Adler-Bell-Jackiw chiral anomaly in a Weyl semimetal , 2015, 1503.02630.

[9]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[10]  C. Felser,et al.  Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP , 2015, Nature Physics.

[11]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[12]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[13]  A. Vishwanath,et al.  Probing the chiral anomaly with nonlocal transport in three dimensional topological semimetals , 2013, 1306.1234.

[14]  A. Grushin Consequences of a condensed matter realization of Lorentz violating QED in Weyl semi-metals , 2012, 1205.3722.

[15]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[16]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[17]  D. Vanderbilt,et al.  Computing topological invariants without inversion symmetry , 2011, 1102.5600.

[18]  X. Qi,et al.  Equivalent expression of Z 2 topological invariant for band insulators using the non-Abelian Berry connection , 2011, 1101.2011.

[19]  T. Zandt,et al.  Quadratic temperature dependence up to 50 K of the resistivity of metallic MoTe2 , 2007 .

[20]  N. Marzari,et al.  wannier90: A tool for obtaining maximally-localised Wannier functions , 2007, Comput. Phys. Commun..

[21]  C. Kane,et al.  Time Reversal Polarization and a Z 2 Adiabatic Spin Pump , 2006, cond-mat/0606336.

[22]  C. Kane,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[23]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[24]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[25]  M. Sancho,et al.  Highly convergent schemes for the calculation of bulk and surface Green functions , 1985 .

[26]  M. Sancho,et al.  Quick iterative scheme for the calculation of transfer matrices: application to Mo (100) , 1984 .

[27]  Holger Bech Nielsen,et al.  The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal , 1983 .

[28]  H. Nielsen,et al.  Absence of neutrinos on a lattice: (I). Proof by homotopy theory , 1981 .

[29]  R. Friend,et al.  Electrical resistivity anomaly in β-MoTe2 (metallic behaviour) , 1978 .

[30]  J. Bell,et al.  A PCAC puzzle: π0→γγ in the σ-model , 1969 .

[31]  Su-Yang Xu,et al.  Experimental realization of a Weyl semimetal phase with Fermi arc surface states in TaAs , 2015 .