Three-Dimensional Architecture of Substrate Integrated Waveguide Feeder for Fermi Tapered Slot Antenna Array Applications

A class of three-dimensional planar arrays in substrate integrated waveguide (SIW) technology is proposed, designed and demonstrated with 8 × 16 elements at 35 GHz for millimeter-wave imaging radar system applications. Endfire element is generally chosen to ensure initial high gain and broadband characteristics for the array. Fermi-TSA (tapered slot antenna) structure is used as element to reduce the beamwidth. Corrugation is introduced to reduce the resulting antenna physical width without degradation of performance. The achieved measured gain in our demonstration is about 18.4 dBi. A taper shaped air gap in the center is created to reduce the coupling between two adjacent elements. An SIW H-to-E-plane vertical interconnect is proposed in this three-dimensional architecture and optimized to connect eight 1 × 16 planar array sheets to the 1 × 8 final network. The overall architecture is exclusively fabricated by the conventional PCB process. Thus, the developed SIW feeder leads to a significant reduction in both weight and cost, compared to the metallic waveguide-based counterpart. A complete antenna structure is designed and fabricated. The planar array ensures a gain of 27 dBi with low SLL of 26 dB and beamwidth as narrow as 5.15 degrees in the E-plane and 6.20 degrees in the 45°-plane.

[1]  Ke Wu,et al.  Corrugated Substrate Integrated Waveguide (SIW) Antipodal Linearly Tapered Slot Antenna Array Fed by Quasi-Triangular Power Divider , 2012 .

[2]  K. Sawaya,et al.  Broadband FDTD analysis of Fermi antenna with narrow width substrate , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[3]  K. Sawaya,et al.  Design of narrow-width Fermi antenna with circular radiation pattern , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[4]  P. Hall,et al.  Handbook of microstrip antennas , 1989 .

[5]  N. V. Shuley,et al.  Parametric study of the co- and crosspolarisation characteristics of tapered planar and antipodal slotline antennas , 1993 .

[6]  E. Gazit,et al.  Improved design of the Vivaldi antenna , 1988 .

[7]  Amir I. Zaghloul,et al.  Designing a 32 element array at 76GHz with a 33dB taylor distribution in waveguide for a radar system , 2009, 2009 IEEE Antennas and Propagation Society International Symposium.

[8]  A. Villeneuve,et al.  Taylor patterns for discrete arrays , 1984 .

[9]  Wenquan Che,et al.  Propagation characteristics of H‐plane folded substrate integrated waveguide bends , 2007 .

[10]  K. Mizuno,et al.  Characteristics of a MM-wave tapered slot antenna with corrugated edges , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[11]  Gabriel M. Rebeiz,et al.  Tapered slotline antennas at 802 GHz , 1993 .

[12]  Henry Jasik,et al.  Antenna engineering handbook , 1961 .

[13]  Peter Hall,et al.  Balanced antipodal Vivaldi antenna for wide bandwidth phased arrays , 1996 .

[14]  T. L. Korzeniowski,et al.  Endfire tapered slot antennas on dielectric substrates , 1985 .

[15]  Kai Chang,et al.  Ultra wideband exponentially-tapered antipodal Vivaldi antennas , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[16]  Li Bin,et al.  The research of broadband millimeter-wave Vivaldi array antenna using SIW technique , 2010, 2010 International Conference on Microwave and Millimeter Wave Technology.

[17]  Ke Wu,et al.  Design of a Monopulse Antenna Using a Dual V-Type Linearly Tapered Slot Antenna (DVLTSA) , 2008, IEEE Transactions on Antennas and Propagation.

[18]  P. J. Gibson The Vivaldi Aerial , 1979, 1979 9th European Microwave Conference.

[19]  E. de Lera Acedo,et al.  Study and Design of a Differentially-Fed Tapered Slot Antenna Array , 2010, IEEE Transactions on Antennas and Propagation.

[20]  John L. Volakis,et al.  Antenna Engineering Handbook , 2007 .

[21]  K. S. Yngvesson,et al.  The tapered slot antenna-a new integrated element for millimeter-wave applications , 1989 .

[22]  D. Schaubert A class of E-plane scan blindnesses in single-polarized arrays of tapered-slot antennas with a ground plane , 1996 .

[23]  Werner Wiesbeck,et al.  Tapered Slot Antenna for LTCC Multilayer Substrate Integration in mm-Wave Applications , 2003 .

[24]  Ke Wu,et al.  Design Consideration and Performance Analysis of Substrate Integrated Waveguide Components , 2002, 2002 32nd European Microwave Conference.

[25]  Joakim F. Johansson,et al.  Slotline Antennas for Millimeter and Submillimeter Wavelengths , 1990, 1990 20th European Microwave Conference.

[26]  Aly E. Fathy,et al.  DEVELOPMENT OF A NOVEL UWB VIVALDI ANTENNA ARRAY USING SIW TECHNOLOGY , 2009 .

[27]  A.E. Fathy,et al.  Low profile multi-layer slotted Substrate Integrated Waveguide (SIW) array antenna with folded feed network for mobile DBS applications , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[28]  A. Taflove,et al.  Substrate integrated waveguides optimized for ultrahigh-speed digital interconnects , 2006, IEEE Transactions on Microwave Theory and Techniques.

[29]  Lu Yang,et al.  18–40-GHz Beam-Shaping/Steering Phased Antenna Array System Using Fermi Antenna , 2008, IEEE Transactions on Microwave Theory and Techniques.

[30]  D. Schaubert,et al.  Analysis of the tapered slot antenna , 1986 .

[31]  J. Hunt,et al.  A broadband stripline array element , 1974 .

[32]  A. Elsherbini,et al.  A highly efficient Vivaldi antenna array design on thick substrate and fed by SIW structure with integrated GCPW feed , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.