Observation of optical-fibre Kerr nonlinearity at the single-photon level

Optical fibres have proved to be an important medium for manipulating and generating light in applications including soliton transmission1, light amplification2, all-optical switching3 and supercontinuum generation4. In the quantum regime, fibres may prove useful for ultralow-power all-optical signal processing5 and quantum information processing6. Here, we demonstrate the first experimental observation of optical nonlinearity at the single-photon level in an optical fibre. Taking advantage of the large nonlinearity and managed dispersion of photonic crystal fibres7,8, we report very small (1 × 10−7 to ∼1 × 10−8 rad) conditional phase shifts induced by weak coherent pulses that contain one or less than one photon per pulse on average. We discuss the feasibility of quantum information processing using optical fibres, taking into account the observed Kerr nonlinearity, accompanied by ultrafast response time and low induced loss. The tiny phase changes introduced by nonlinear optics performed at the single-photon level is reported in a photonic crystal fibre with carefully designed nonlinear and dispersion properties. The approach may prove useful in future quantum information processing schemes.

[1]  O. Glockl,et al.  Reduction of Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibers , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[2]  Milburn,et al.  Quantum optical Fredkin gate. , 1989, Physical review letters.

[3]  Gustafson,et al.  Sagnac interferometer for gravitational-wave detection. , 1996, Physical review letters.

[4]  T. Kanamori,et al.  Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber , 1992, IEEE Photonics Technology Letters.

[5]  N. Matsuda,et al.  Lossless all-optical phase gate using a polarization-division Sagnac interferometer applicable to a waveguide-type Kerr medium , 2007 .

[6]  Ping Jiang,et al.  Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity , 2008 .

[7]  P. Russell Photonic Crystal Fibers , 2003, Science.

[8]  D. M. Atkin,et al.  All-silica single-mode optical fiber with photonic crystal cladding. , 1996, Optics letters.

[9]  G. Sagnac L'ether lumineux demontre par l'effet du vent relatif d'ether dans un interferometre en rotation uniforme , 1913 .

[10]  Yamamoto,et al.  Number-phase minimum-uncertainty state with reduced number uncertainty in a Kerr nonlinear interferometer. , 1986, Physical review. A, General physics.

[11]  Do-Hyun Kim,et al.  Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. , 2004, Optics express.

[12]  Jeffrey H. Shapiro,et al.  Continuous-time cross-phase modulation and quantum computation , 2007 .

[13]  Jeremy L O'Brien,et al.  Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. , 2007, Physical review letters.

[14]  Dirk Englund,et al.  Controlled Phase Shifts with a Single Quantum Dot , 2008, Science.

[15]  James P. Gordon,et al.  Experimental observation of picosecond pulse narrowing and solitons in optical fibers (A) , 1980 .

[16]  P. Roberts,et al.  Demonstration of ultra-flattened dispersion in photonic crystal fibers. , 2002, Optics express.

[17]  K. Sato,et al.  Ultralow loss and long length photonic crystal fiber , 2004, Journal of Lightwave Technology.

[18]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[19]  T. Spiller,et al.  Quantum computation by communication , 2005, quant-ph/0509202.

[20]  Luo,et al.  Ultrafast Faraday spectroscopy in magnetic semiconductor quantum structures. , 1994, Physical review. B, Condensed matter.

[21]  Fox,et al.  Squeezed light generation in semiconductors. , 1995, Physical review letters.

[22]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[23]  M. Takeoka,et al.  Photon number squeezing of ultrabroadband laser pulses generated by microstructure fibers. , 2005, Physical review letters.

[24]  Masataka Nakazawa,et al.  Efficient Er3+‐doped optical fiber amplifier pumped by a 1.48 μm InGaAsP laser diode , 1989 .

[25]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[26]  U. Leonhardt,et al.  Fiber-Optical Analog of the Event Horizon , 2007, Science.

[27]  Scanning interferometric microscopy for the detection of ultrasmall phase shifts in condensed matter , 2006 .

[28]  Kae Nemoto,et al.  Weak nonlinearities: a new route to optical quantum computation , 2005, quant-ph/0507084.