Jackson's Theorems and the Number of Hidden Units in Neural Networks for Uniform Approximation
暂无分享,去创建一个
[1] Laurent Schwartz,et al. Étude des sommes d'exponentielles , 1959 .
[2] Gian-Carlo Rota,et al. Linear Operators and Approximation Theory. , 1965 .
[3] C. Micchelli,et al. Approximation by superposition of sigmoidal and radial basis functions , 1992 .
[4] G. Meinardus. Approximation von Funktionen und ihre numerische Behandlung , 1964 .
[5] George Cybenko,et al. Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..
[6] Andrew R. Barron,et al. Universal approximation bounds for superpositions of a sigmoidal function , 1993, IEEE Trans. Inf. Theory.
[7] D. Jackson. On approximation by trigonometric sums and polynomials , 1912 .
[8] Charles A. Micchelli,et al. Dimension-independent bounds on the degree of approximation by neural networks , 1994, IBM J. Res. Dev..
[9] Ken-ichi Funahashi,et al. On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.
[10] Kurt Hornik,et al. Multilayer feedforward networks are universal approximators , 1989, Neural Networks.
[11] B. Irie,et al. Capabilities of three-layered perceptrons , 1988, IEEE 1988 International Conference on Neural Networks.
[12] S. Bernstein,et al. Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle , 1926 .
[13] John M. Danskin,et al. Approximation of functions of several variables and imbedding theorems , 1975 .