Three-Dimensional Electrical Structure and Seismogenic Environment of the Crust–Mantle in the Lushan Earthquake Region, China

[1]  E. Wang,et al.  The mechanism of deep material transport and seismogenic environment of the Xiaojiang fault system revealed by 3-D magnetotelluric study , 2022, Science China Earth Sciences.

[2]  Sheng Jin,et al.  Dynamical significance of the Tanlu Fault Zone in the destruction of the North China Craton: The evidence provided by the three-dimensional Magnetotelluric array study , 2021 .

[3]  Xin Li,et al.  A plume-modified lithospheric barrier to the southeastward flow of partially molten Tibetan crust inferred from magnetotelluric data , 2020 .

[4]  Zhang-fa Yu,et al.  High-resolution crustal/lithospheric viscosity of the Longmenshan fault zone, Sichuan province and its geodynamic implications , 2020 .

[5]  Xiaosong Yang,et al.  Melting conditions in the modern Tibetan crust since the Miocene , 2018, Nature Communications.

[6]  Gang Wang,et al.  3-D electrical structure across the Yadong-Gulu rift revealed by magnetotelluric data: New insights on the extension of the upper crust and the geometry of the underthrusting Indian lithospheric slab in southern Tibet , 2017 .

[7]  Xi-wei Xu,et al.  Rupture mechanism and seismotectonics of the Ms6.5 Ludian earthquake inferred from three‐dimensional magnetotelluric imaging , 2017 .

[8]  Z. Wang,et al.  Deep structure imaging of multi-geophysical parameters and seismogenesis in the Longmenshan fault zone , 2017 .

[9]  I. Buick,et al.  Fluids, melting, granulites and granites: A commentary , 2016 .

[10]  Yan Ya Aeromagnetic field characteristics and the Wenchuan earthquakes in the Longmenshan mountains and adjacent areas , 2016 .

[11]  Cunxi Liu,et al.  New insights into the generation of the 2013 Lushan Earthquake (Ms 7.0), China , 2015 .

[12]  Xu Song Tectonic implications of images of Bouguer gravity anomaliy and its normalized full gradient in Lushan-Kangding area , 2015 .

[13]  X. Wang,et al.  3D P-Wave Velocity Structure of the Crust and Relocation of Earthquakes in 21 the Lushan Source Area , 2014 .

[14]  Guoqing Zhang,et al.  Significant isostatic imbalance near the seismic gap between the M8.0 Wenchuan and M7.0 Lushan earthquakes , 2014 .

[15]  Gary D. Egbert,et al.  ModEM: A modular system for inversion of electromagnetic geophysical data , 2014, Comput. Geosci..

[16]  Wei Zhang,et al.  Crust and upper mantle resistivity structure at middle section of Longmenshan, eastern Tibetan plateau , 2014 .

[17]  F. Xie,et al.  The 20 April 2013 Lushan, Sichuan, mainshock, and its aftershock sequence: tectonic implications , 2014 .

[18]  Guoze Zhao,et al.  Deep structure beneath the southwestern section of the Longmenshan fault zone and seimogenetic context of the 4.20 Lushan MS7.0 earthquake , 2013 .

[19]  Jianping Wu,et al.  Relocation of the mainshock and aftershock sequences of MS7.0 Sichuan Lushan earthquake , 2013 .

[20]  Wenjun Zheng,et al.  Lushan MS7.0 earthquake: A blind reserve-fault event , 2013 .

[21]  F. Gaillard,et al.  Experimental assessment of the relationships between electrical resistivity, crustal melting and strain localization beneath the Himalayan–Tibetan Belt , 2013 .

[22]  Xiong Xiong,et al.  Crustal and upper mantle structure and the deep seismogenic environment in the source regions of the Lushan earthquake and the Wenchuan earthquake , 2013, Science China Earth Sciences.

[23]  Wang Xu Electrical resistivity structure of Longmenshan crust-mantle under sector boundary , 2013 .

[24]  John R. Booker,et al.  The Magnetotelluric Phase Tensor: A Critical Review , 2013, Surveys in Geophysics.

[25]  K. Selway On the Causes of Electrical Conductivity Anomalies in Tectonically Stable Lithosphere , 2013, Surveys in Geophysics.

[26]  Alan G. Jones,et al.  Crustal structure and rheology of the Longmenshan and Wenchuan Mw 7.9 earthquake epicentral area from magnetotelluric data , 2012 .

[27]  Gary D. Egbert,et al.  Computational recipes for electromagnetic inverse problems , 2012 .

[28]  Zhang Le Electrical structure of crust and upper mantle beneath the eastern margin of the Tibetan plateau and the Sichuan basin , 2012 .

[29]  T. Yoshino,et al.  Unstable graphite films on grain boundaries in crustal rocks , 2011 .

[30]  Max A. Meju,et al.  Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging , 2010 .

[31]  Yann Klinger,et al.  Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China , 2009 .

[32]  J. Shaw,et al.  Uplift of the Longmen Shan and Tibetan plateau, and the 2008 Wenchuan (M = 7.9) earthquake , 2009, Nature.

[33]  Z. Yong The rheological structures of crust and mechanics of high-angle reverse fault slip for Wenchuan M_S8.0 earthquake , 2009 .

[34]  Chen Ji,et al.  Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin , 2008, Nature.

[35]  Tian Xiao-bin Structural segmentation and zonation and differential deformation across and along the Lomgmen thrust belt,West Sichuan,China , 2008 .

[36]  Cheng Fang-yuan Uplift of the Longmen-Jinping orogenic belt along the eastern margin of the Qinghai-Tibet Plateau:Large-scale detachment faulting and extrusion mechanism. , 2007 .

[37]  Jian Zhang,et al.  Analysis of the non-monotony cooling on the thermal evolution history of Venus , 2007 .

[38]  D. Ebel,et al.  Thermochemistry of Sulfide Mineral Solutions , 2007 .

[39]  G. Marquis,et al.  Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data , 2005, Nature.

[40]  H. Bibby,et al.  The magnetotelluric phase tensor , 2004 .

[41]  J. Booker,et al.  Partial melt or aqueous fluid in the mid-crust of Southern Tibet? Constraints from INDEPTH magnetotelluric data , 2003 .

[42]  Bertrand Meyer,et al.  Oblique Stepwise Rise and Growth of the Tibet Plateau , 2001, Science.

[43]  P. Bedrosian,et al.  Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies , 2001, Science.

[44]  S. Deng,et al.  Klukiopsis jurassica—A new Jurassic schizaeaceous fern from China , 2000 .

[45]  Leigh H. Royden,et al.  Topographic ooze: Building the eastern margin of Tibet by lower crustal flow , 2000 .

[46]  N. Harris,et al.  Experimental Constraints on Himalayan Anatexis , 1998 .

[47]  W. Kidd,et al.  Shallow structure of the Yadong‐Gulu rift, southern Tibet, from refraction analysis of Project INDEPTH common midpoint data , 1998 .

[48]  B. Yardley,et al.  The petrologic case for a dry lower crust , 1997 .

[49]  Robert L. Parker,et al.  Optimal one-dimensional inversion and bounding of magnetotelluric apparent resistivity and phase measurements , 1996 .

[50]  B. Frost,et al.  Is water responsible for geophysical anomalies in the deep continental crust? A petrological perspective , 1994 .

[51]  S. Kay,et al.  Delamination and delamination magmatism , 1993 .

[52]  Alan G. Jones,et al.  Electrical conductivity of the continental lower crust , 1992 .

[53]  Robert O. Foumier The transition from hydrostatic to greater than hydrostatic fluid pressure in presently active continental hydrothermal systems in crystalline rock , 1991 .

[54]  W. Fyfe,et al.  Grain-boundary graphite in rocks and implications for high electrical conductivity in the lower crust , 1989, Nature.

[55]  Alan D. Chave,et al.  On the robust estimation of power spectra, coherences, and transfer functions , 1987 .

[56]  G. Egbert,et al.  Robust estimation of geomagnetic transfer functions , 1986 .

[57]  B. Yardley Earth science: Is there water in the deep continental crust? , 1986, Nature.

[58]  John Clarke,et al.  Magnetotellurics with a remote magnetic reference , 1979 .

[59]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .