Inside environment in broiler housing with new and built-up litter.

The growth of the Brazilian poultry processing facilities required to improve the productivity of the system. The thermoneutral zone is related to an ideal thermal environment, where birds have good conditions to express their productive characteristics. This work was carried out to analyze the internal microclimate in broiler houses using new bed (House 1) or reused litter (House 2), in order to understand the inference of the same on the thermal dynamics of the environment and quantify the impact of reuse from inside the house. The evaluation was based on environmental variables: air temperature, bed temperature and black globe temperature, relative humidity, air velocity and light intensity. With the collected data were calculated the rates of temperature and humidity (RTH), the rate of black globe temperature and humidity (RBGTH) and radiant heat load (RHL) of each house. In both houses the air temperature was above the recommended (27.4 and 28.0 °C). The house with reused litter had the lowest relative humidity (57.8%) and the lowest air velocity (0.7 m s-1). Comfort levels differ between systems, and thermal conditions more stressful for the birds found in the house with reused litter (RTH = 25.31 and WBGT = 25.67).

[1]  I. A. Nääs,et al.  Selecting the most adequate bedding material for broiler production in Brazil , 2012 .

[2]  Thayla Morandi Ridolfi de Carvalho,et al.  Qualidade da Cama e do Ar em Diferentes Condições de Alojamento de Frangos de Corte em Fase de Aquecimento , 2011 .

[3]  M. Oliveira,et al.  Produção de amônia no interior de galpões avícolas com modificações ambientais , 2011 .

[4]  Marcelo Bastos Cordeiro,et al.  DESEMPENHO PRODUTIVO DE FRANGOS DE CORTE EM DIFERENTES SISTEMAS DE INSTALAÇÕES SEMICLIMATIZADAS NO SUL DO BRASIL , 2010 .

[5]  J. W. B. D. Nascimento,et al.  Índíces de conforto térmico e concentração de gases em galpões avícolas no semiárido Paraibano , 2010 .

[6]  Iran José Oliveira da Silva,et al.  Transporte de frangos: caracterização do microclima na carga durante o inverno , 2009 .

[7]  E. A. Amazonas,et al.  Estresse térmico durante o pré-abate em frangos de corte , 2009 .

[8]  C. V. Araújo,et al.  AVALIAÇÃO DO AMBIENTE TÉRMICO INTERNO EM GALPí•ES DE FRANGO DE CORTE COM DIFERENTES MATERIAIS DE COBERTURA NA MESORREGIÃO METROPOLITANA DE BELÉM1 , 2009 .

[9]  Lindomar José Pena,et al.  Avaliação da atividade antifúngica de alguns compostos recomendados para o tratamento de cama de aviário , 2008 .

[10]  M. Abreu,et al.  Efeitos da temperatura e da umidade relativa sobre o desempenho e o rendimento de cortes nobres de frangos de corte de 1 a 49 dias de idade , 2006 .

[11]  . Z.H.M.Abu-Dieyeh,et al.  Effect of Chronic Heat Stress and Long-Term Feed Restriction on Broiler Performance , 2006 .

[12]  J. L. Campo,et al.  Effects of specific noise and music stimuli on stress and fear levels of laying hens of several breeds , 2005 .

[13]  H. J. Chepete,et al.  PRODUCTION PERFORMANCE AND TEMPERATURE-HUMIDITY INDEX OF COBB 500 BROILERS REARED IN OPEN-SIDED NATURALLY VENTILATED HOUSES IN BOTSWANA , 2005 .

[14]  H. Xin,et al.  Temperature-Humidity-Velocity Index for Market-size Broilers , 2003 .

[15]  R. Haziroğlu,et al.  A Case of Aspergillosis in a Broiler Breeder Flock , 2002, Avian diseases.

[16]  J. Pitt,et al.  Influence of pH on the growth of some toxigenic species of Aspergillus, Penicillium and Fusarium. , 1991, International journal of food microbiology.

[17]  D. E. Buffington,et al.  Black Globe-Humidity Index (BGHI) as Comfort Equation for Dairy Cows , 1981 .