Structure and mechanism of helicases and nucleic acid translocases.

Helicases and translocases are a ubiquitous, highly diverse group of proteins that perform an extraordinary variety of functions in cells. Consequently, this review sets out to define a nomenclature for these enzymes based on current knowledge of sequence, structure, and mechanism. Using previous definitions of helicase families as a basis, we delineate six superfamilies of enzymes, with examples of crystal structures where available, and discuss these structures in the context of biochemical data to outline our present understanding of helicase and translocase activity. As a result, each superfamily is subdivided, where appropriate, on the basis of mechanistic understanding, which we hope will provide a framework for classification of new superfamily members as they are discovered and characterized.

[1]  S. Kowalczykowski,et al.  Translocation step size and mechanism of the RecBC DNA helicase , 2000, Nature.

[2]  J M Carazo,et al.  Polymorphic quaternary organization of the Bacillus subtilis bacteriophage SPP1 replicative helicase (G40 P). , 1998, Journal of molecular biology.

[3]  Teresa Ruiz,et al.  The DnaB·DnaC complex: a structure based on dimers assembled around an occluded channel , 2001, The EMBO journal.

[4]  E. Koonin,et al.  Organization and evolution of bacterial and bacteriophage primase-helicase systems , 1992, Journal of Molecular Evolution.

[5]  A. Tackett,et al.  Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  L. Joshua-Tor,et al.  Mechanism of DNA translocation in a replicative hexameric helicase , 2006, Nature.

[7]  J. Deisenhofer,et al.  Nucleotide Control of Interdomain Interactions in the Conformational Reaction Cycle of SecA , 2002, Science.

[8]  Anton J. Enright,et al.  References and Notes Materials and Methods Som Text Figs. S1 to S9 Tables S1 to S3 References and Notes Protein Displacement by Dexh/d " Rna Helicases " without Duplex Unwinding , 2022 .

[9]  D. Wigley,et al.  Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. , 2000, Biochemistry.

[10]  Craig M. Ogata,et al.  The structure and function of MCM from archaeal M. Thermoautotrophicum , 2003, Nature Structural Biology.

[11]  I. Tinoco,et al.  RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP , 2006, Nature.

[12]  Gerald R. Smith,et al.  Monomeric RecBCD Enzyme Binds and Unwinds DNA (*) , 1995, The Journal of Biological Chemistry.

[13]  A. Pyle,et al.  Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. , 2001, Science.

[14]  Smita S. Patel,et al.  A Brownian motor mechanism of translocation and strand separation by hepatitis C virus helicase , 2005, Nature Structural &Molecular Biology.

[15]  B. Stillman,et al.  A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Wigley,et al.  Structural Analysis of DNA Replication Fork Reversal by RecG , 2001, Cell.

[17]  M. Hingorani,et al.  The dTTPase mechanism of T7 DNA helicase resembles the binding change mechanism of the F1-ATPase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[18]  F. Dyda,et al.  Binding and unwinding: SF3 viral helicases. , 2005, Current opinion in structural biology.

[19]  Fernando de la Cruz,et al.  The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase , 2001, Nature.

[20]  D. Wigley,et al.  DNA helicases: 'inching forward'. , 2000, Current opinion in structural biology.

[21]  N. Cozzarelli,et al.  Identification of oligonucleotide sequences that direct the movement of the Escherichia coli FtsK translocase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Andrew Flaus,et al.  Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer? , 2004, Current opinion in genetics & development.

[23]  K. Raney,et al.  Increasing the length of the single-stranded overhang enhances unwinding of duplex DNA by bacteriophage T4 Dda helicase. , 2005, Biochemistry.

[24]  E. Mancini,et al.  Atomic Snapshots of an RNA Packaging Motor Reveal Conformational Changes Linking ATP Hydrolysis to RNA Translocation , 2004, Cell.

[25]  Dong-Eun Kim,et al.  T7 DNA helicase: a molecular motor that processively and unidirectionally translocates along single-stranded DNA. , 2002, Journal of molecular biology.

[26]  F. Studier,et al.  Biochemical Analysis of Mutant T7 Primase/Helicase Proteins Defective in DNA Binding, Nucleotide Hydrolysis, and the Coupling of Hydrolysis with DNA Unwinding* , 1996, The Journal of Biological Chemistry.

[27]  M. O’Donnell,et al.  Replicative helicase loaders: ring breakers and ring makers , 2003, Current Biology.

[28]  Tania A. Baker,et al.  Rebuilt AAA + motors reveal operating principles for ATP-fuelled machines , 2005, Nature.

[29]  G. Waksman,et al.  Comparisons between the structures of HCV and Rep helicases reveal structural similarities between SF1 and SF2 super‐families of helicases , 1998, Protein science : a publication of the Protein Society.

[30]  M. F. White,et al.  The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. , 2006, Molecular cell.

[31]  J. Walker,et al.  Distantly related sequences in the alpha‐ and beta‐subunits of ATP synthase, myosin, kinases and other ATP‐requiring enzymes and a common nucleotide binding fold. , 1982, The EMBO journal.

[32]  A. Pyle,et al.  Robust translocation along a molecular monorail: the NS3 helicase from hepatitis C virus traverses unusually large disruptions in its track. , 2006, Journal of molecular biology.

[33]  Gabriel Waksman,et al.  Major Domain Swiveling Revealed by the Crystal Structures of Complexes of E. coli Rep Helicase Bound to Single-Stranded DNA and ADP , 1997, Cell.

[34]  M. Gefter,et al.  Enzyme-catalyzed DNA unwinding: studies on Escherichia coli rep protein. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Charles C. Richardson,et al.  Crystal Structure of the Helicase Domain from the Replicative Helicase-Primase of Bacteriophage T7 , 1999, Cell.

[36]  Kevin D Raney,et al.  Structural and Biological Identification of Residues on the Surface of NS3 Helicase Required for Optimal Replication of the Hepatitis C Virus* , 2006, Journal of Biological Chemistry.

[37]  M. Sawaya,et al.  The crystal structure of the bifunctional primase-helicase of bacteriophage T7. , 2003, Molecular cell.

[38]  C. Körner,et al.  X-Ray Structures of the Sulfolobus solfataricus SWI2/SNF2 ATPase Core and Its Complex with DNA , 2005, Cell.

[39]  S. Velankar,et al.  DNA binding mediates conformational changes and metal ion coordination in the active site of PcrA helicase. , 1999, Journal of molecular biology.

[40]  D. Gai,et al.  Mechanisms of Conformational Change for a Replicative Hexameric Helicase of SV40 Large Tumor Antigen , 2004, Cell.

[41]  Smita S. Patel,et al.  The Functional Interaction of the Hepatitis C Virus Helicase Molecules Is Responsible for Unwinding Processivity* , 2004, Journal of Biological Chemistry.

[42]  N. Tanner,et al.  From RNA helicases to RNPases. , 2001, Trends in biochemical sciences.

[43]  K. Raney,et al.  Protein displacement by an assembly of helicase molecules aligned along single-stranded DNA , 2004, Nature Structural &Molecular Biology.

[44]  T. Owen-Hughes,et al.  Evidence for DNA Translocation by the ISWI Chromatin-Remodeling Enzyme , 2003, Molecular and Cellular Biology.

[45]  G. Oster,et al.  Mechanochemistry of transcription termination factor Rho. , 2006, Molecular cell.

[46]  Dale B. Wigley,et al.  Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks , 2004, Nature.

[47]  J. Choe,et al.  RNA helicase activity of Escherichia coli SecA protein. , 1997, Biochemical and biophysical research communications.

[48]  W. Kabsch,et al.  The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. , 1997, Science.

[49]  A. Pyle,et al.  The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding , 2002, The EMBO journal.

[50]  N. Tanner,et al.  The DEAD-box protein family of RNA helicases. , 2006, Gene.

[51]  J. Berger,et al.  Structure of the Rho Transcription Terminator Mechanism of mRNA Recognition and Helicase Loading , 2003, Cell.

[52]  D. Wigley,et al.  Unwinding the 'Gordian knot' of helicase action. , 2001, Trends in biochemical sciences.

[53]  M. Hingorani,et al.  Cooperative interactions of nucleotide ligands are linked to oligomerization and DNA binding in bacteriophage T7 gene 4 helicases. , 1996, Biochemistry.

[54]  C. Müller,et al.  Crystal structure and functional analysis of a nucleosome recognition module of the remodeling factor ISWI. , 2003, Molecular cell.

[55]  T. Lohman,et al.  An oligomeric form of E. coli UvrD is required for optimal helicase activity. , 1999, Journal of molecular biology.

[56]  W. Chi,et al.  The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3) , 1996, Journal of virology.

[57]  Geoffrey J. Barton,et al.  Identification of multiple distinct Snf2 subfamilies with conserved structural motifs , 2006, Nucleic acids research.

[58]  N. Sonenberg,et al.  Mutational analysis of a DEAD box RNA helicase: the mammalian translation initiation factor eIF‐4A. , 1992, The EMBO journal.

[59]  D. Wigley,et al.  Defining the roles of individual residues in the single-stranded DNA binding site of PcrA helicase , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[60]  N. Tanner,et al.  The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. , 2003, Molecular cell.

[61]  T. Rapoport,et al.  RecA-like motor ATPases--lessons from structures. , 2004, Biochimica et biophysica acta.

[62]  S. Kowalczykowski,et al.  Characterization of the Adenosinetriphosphatase Activity of the Escherichia coli RecBCD Enzyme : Relationship of ATP Hydrolysis to the Unwinding of Duplex DNA + , 1988 .

[63]  R. De Francesco,et al.  Mutational analysis of hepatitis C virus NS3-associated helicase. , 2000, The Journal of general virology.

[64]  J P Griffith,et al.  Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. , 1998, Structure.

[65]  M. Jezewska,et al.  Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: quantitative analysis of the rate of the dsDNA unwinding, processivity and kinetic step-size of the Escherichia coli DnaB helicase using rapid quench-flow method. , 2004, Journal of molecular biology.

[66]  S. Kowalczykowski,et al.  Bipolar DNA Translocation Contributes to Highly Processive DNA Unwinding by RecBCD Enzyme* , 2005, Journal of Biological Chemistry.

[67]  Ding‐Shinn Chen,et al.  Structure-Based Mutational Analysis of the Hepatitis C Virus NS3 Helicase , 2001, Journal of Virology.

[68]  M. van Heel,et al.  Hexameric ring structure of the full‐length archaeal MCM protein complex , 2003, EMBO reports.

[69]  J. Diffley,et al.  Uninterrupted MCM2-7 function required for DNA replication fork progression. , 2000, Science.

[70]  E. Scherzinger,et al.  Crystal structure of the hexameric replicative helicase RepA of plasmid RSF1010. , 2001, Journal of molecular biology.

[71]  D. Wigley,et al.  Site-directed mutagenesis of motif III in PcrA helicase reveals a role in coupling ATP hydrolysis to strand separation. , 1999, Nucleic acids research.

[72]  Jan Pieter Abrahams,et al.  Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria , 1994, Nature.

[73]  P. Lasko,et al.  Bent out of Shape: RNA Unwinding by the DEAD-Box Helicase Vasa , 2006, Cell.

[74]  K. Bjornson,et al.  Mechanisms of helicase-catalyzed DNA unwinding. , 1996, Annual review of biochemistry.

[75]  D. Wigley,et al.  Uncoupling DNA translocation and helicase activity in PcrA: direct evidence for an active mechanism , 2000, The EMBO journal.

[76]  T. Lohman,et al.  Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[77]  L. Bird,et al.  Crystal structure of a DExx box DNA helicase , 1996, Nature.

[78]  V. Serebrov,et al.  Periodic cycles of RNA unwinding and pausing by hepatitis C virus NS3 helicase , 2004, Nature.

[79]  S. Velankar,et al.  Crystal Structures of Complexes of PcrA DNA Helicase with a DNA Substrate Indicate an Inchworm Mechanism , 1999, Cell.

[80]  E. Koonin,et al.  A new superfamily of putative NTP‐binding domains encoded by genomes of small DNA and RNA viruses , 1990, FEBS letters.

[81]  J. Keck,et al.  Structure and Function of RecQ DNA Helicases , 2004, Critical reviews in biochemistry and molecular biology.

[82]  P. Sung,et al.  Rad54p Is a Chromatin Remodeling Enzyme Required for Heteroduplex DNA Joint Formation with Chromatin* , 2003, The Journal of Biological Chemistry.

[83]  R. G. Lloyd,et al.  A model for dsDNA translocation revealed by a structural motif common to RecG and Mfd proteins , 2003, The EMBO journal.

[84]  J. Berger,et al.  Evolutionary relationships and structural mechanisms of AAA+ proteins. , 2006, Annual review of biophysics and biomolecular structure.

[85]  Taekjip Ha,et al.  Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase , 2002, Nature.

[86]  J. Tainer,et al.  Structure and mechanism of the RuvB Holliday junction branch migration motor. , 2001, Journal of molecular biology.

[87]  E. Egelman,et al.  DNA is bound within the central hole to one or two of the six subunits of the T7 DNA helicase , 1996, Nature Structural Biology.

[88]  T. Lohman,et al.  Mechanism of ATP-dependent translocation of E.coli UvrD monomers along single-stranded DNA. , 2004, Journal of molecular biology.

[89]  G. Oster,et al.  Mechanochemistry of t7 DNA helicase. , 2005, Journal of molecular biology.

[90]  S. Mukherjee,et al.  DNA-induced switch from independent to sequential dTTP hydrolysis in the bacteriophage T7 DNA helicase. , 2006, Molecular cell.

[91]  Eugene V. Koonin,et al.  Helicases: amino acid sequence comparisons and structure-function relationships , 1993 .

[92]  Yiming Xu,et al.  Sequential Hydrolysis of ATP Molecules Bound in Interacting Catalytic Sites of Escherichia coli Transcription Termination Protein Rho* , 1998, The Journal of Biological Chemistry.

[93]  K. Firman,et al.  Measuring motion on DNA by the type I restriction endonuclease EcoR124I using triplex displacement , 2000, The EMBO journal.

[94]  K. Weißhart,et al.  Characterization of the nucleotide binding properties of SV40 T antigen using fluorescent 3'(2')-O-(2,4,6-trinitrophenyl)adenine nucleotide analogues. , 1998, Biochemistry.

[95]  O. Uhlenbeck,et al.  Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA , 2001, The EMBO journal.

[96]  A. Pyle,et al.  The DExH protein NPH-II is a processive and directional motor for unwinding RNA , 2000, Nature.

[97]  X. Xi,et al.  Escherichia coli RecQ Is a Rapid, Efficient, and Monomeric Helicase* , 2006, Journal of Biological Chemistry.

[98]  D. Mckay,et al.  Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[99]  W. Bujalowski,et al.  Negative cooperativity in the binding of nucleotides to Escherichia coli replicative helicase DnaB protein. Interactions with fluorescent nucleotide analogs. , 1993, Biochemistry.

[100]  Cees Dekker,et al.  When a helicase is not a helicase: dsDNA tracking by the motor protein EcoR124I , 2006, The EMBO journal.

[101]  M. O’Donnell,et al.  Twin DNA pumps of a hexameric helicase provide power to simultaneously melt two duplexes. , 2004, Molecular cell.

[102]  Edward H. Egelman,et al.  The hexameric E. coli DnaB helicase can exist in different Quaternary states. , 1996, Journal of molecular biology.

[103]  A. Shelat,et al.  Structurally Conserved Amino Acid W501 Is Required for RNA Helicase Activity but Is Not Essential for DNA Helicase Activity of Hepatitis C Virus NS3 Protein , 2003, Journal of Virology.

[104]  D. Wigley,et al.  Modularity and Specialization in Superfamily 1 and 2 Helicases , 2002, Journal of bacteriology.

[105]  T. Lohman,et al.  Kinetic Measurement of the Step Size of DNA Unwinding by Escherichia coli UvrD Helicase , 1997, Science.

[106]  Jan Löwe,et al.  Double-stranded DNA translocation: structure and mechanism of hexameric FtsK. , 2006, Molecular cell.

[107]  P. V. von Hippel,et al.  Structure and assembly of the Escherichia coli transcription termination factor rho and its interaction with RNA. I. Cryoelectron microscopic studies. , 1991, Journal of molecular biology.

[108]  N. Savery,et al.  Structural Basis for Bacterial Transcription-Coupled DNA Repair , 2006, Cell.

[109]  A. Alexeev,et al.  Structure of the SWI2/SNF2 chromatin-remodeling domain of eukaryotic Rad54 , 2005, Nature Structural &Molecular Biology.

[110]  Jin-Qiu Zhou,et al.  Saccharomyces Rrm3p, a 5' to 3' DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. , 2002, Genes & development.

[111]  D. Kaplan,et al.  The 3'-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase. , 2000, Journal of molecular biology.

[112]  C. Cameron,et al.  Multiple Full-length NS3 Molecules Are Required for Optimal Unwinding of Oligonucleotide DNA in Vitro* , 2005, Journal of Biological Chemistry.

[113]  S. Tans,et al.  SecA Supports a Constant Rate of Preprotein Translocation* , 2006, Journal of Biological Chemistry.

[114]  Smita S. Patel,et al.  ATP Binding Modulates the Nucleic Acid Affinity of Hepatitis C Virus Helicase* , 2003, Journal of Biological Chemistry.

[115]  O. Nureki,et al.  Structural Basis for RNA Unwinding by the DEAD-Box Protein Drosophila Vasa , 2006, Cell.

[116]  J. Keck,et al.  High‐resolution structure of the E.coli RecQ helicase catalytic core , 2003, The EMBO journal.

[117]  Meriem El Karoui,et al.  KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase , 2005, The EMBO journal.

[118]  Michael R Sawaya,et al.  Crystal Structure of T7 Gene 4 Ring Helicase Indicates a Mechanism for Sequential Hydrolysis of Nucleotides , 2000, Cell.

[119]  R. G. Lloyd,et al.  Crystal Structure of DNA Recombination Protein RuvA and a Model for Its Binding to the Holliday Junction , 1996, Science.

[120]  S. West,et al.  The RuvABC proteins and Holliday junction processing in Escherichia coli , 1996, Journal of bacteriology.

[121]  A. Pyle,et al.  Backbone tracking by the SF2 helicase NPH-II , 2004, Nature Structural &Molecular Biology.