On the Minimum of a Polynomial Function on a Basic Closed Semialgebraic Set and Applications

We give an explicit upper bound for the algebraic degree and an explicit lower bound for the absolute value of the minimum of a polynomial function on a compact connected component of a basic closed semialgebraic set when this minimum is not zero. As an application, we obtain a lower bound for the separation of two disjoint connected components of basic closed semialgebraic sets, when at least one of them is compact.

[1]  Chandrajit L. Bajaj,et al.  The algebraic degree of geometric optimization problems , 1988, Discret. Comput. Geom..

[2]  Juan Sabia,et al.  On Sign Conditions Over Real Multivariate Polynomials , 2008, Discret. Comput. Geom..

[3]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[4]  Marie-Françoise Roy,et al.  Bounding the radii of balls meeting every connected component of semi-algebraic sets , 2009, J. Symb. Comput..

[5]  I. Shafarevich Basic algebraic geometry , 1974 .

[6]  Bernd Sturmfels,et al.  The algebraic degree of semidefinite programming , 2010, Math. Program..

[7]  Martin Sombra The height of the mixed sparse resultant , 2002 .

[8]  Jean-Claude Yakoubsohn,et al.  Numerical analysis of a bisection-exclusion method to find zeros of univariate analytic functions , 2005, J. Complex..

[9]  Daniel Perrucci,et al.  On the minimum of a positive polynomial over the standard simplex , 2009, J. Symb. Comput..

[10]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[11]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[12]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[13]  Jiawang Nie,et al.  Algebraic Degree of Polynomial Optimization , 2008, SIAM J. Optim..

[14]  Bernard Mourrain,et al.  On continued fraction expansion of real roots of polynomial systems, complexity and condition numbers , 2011, Theor. Comput. Sci..

[15]  Kristoffer Arnsfelt Hansen,et al.  Exact algorithms for solving stochastic games: extended abstract , 2011, STOC.

[16]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[17]  M. Mignotte,et al.  Polynomials: An Algorithmic Approach , 1999 .

[18]  Bernard Mourrain,et al.  The DMM bound: multivariate (aggregate) separation bounds , 2010, ISSAC.

[19]  Kristian Ranestad,et al.  A general formula for the algebraic degree in semidefinite programming , 2007, math/0701877.