Contribution of ice sheet and mountain glacier melt to recent sea level rise

Altimeter data suggest that sea level rose by about 2.4 mm per year from 2005 to 2011, but estimates of the relative contributions of ocean warming and increased ocean mass are equivocal. An analysis of ocean temperature and satellite gravity data suggests that the delivery of meltwater from ice sheets and mountain glaciers contributed 75% of the observed sea-level rise.

[1]  Guillaume Ramillien,et al.  Sea level budget over 2003-2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo , 2009 .

[2]  M. Cheng,et al.  Variations in the Earth's oblateness during the past 28 years , 2004 .

[3]  N. P. Fofonoff,et al.  Algorithms for Computation of Fundamental Properties of Seawater. Endorsed by Unesco/SCOR/ICES/IAPSO Joint Panel on Oceanographic Tables and Standards and SCOR Working Group 51. Unesco Technical Papers in Marine Science, No. 44. , 1983 .

[4]  A. Cazenave,et al.  Time-variable gravity from space and present-day mass redistribution in theEarth system , 2010 .

[5]  B. D. Tapley,et al.  Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet , 2006, Science.

[6]  E. Leuliette,et al.  Closing the sea level rise budget with altimetry, Argo, and GRACE , 2009 .

[7]  N. White,et al.  A 20th century acceleration in global sea‐level rise , 2006 .

[8]  Anny Cazenave,et al.  Contemporary sea level rise. , 2010, Annual review of marine science.

[9]  I. Velicogna Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE , 2009 .

[10]  R. Scharroo,et al.  Integrating Jason-2 into a Multiple-Altimeter Climate Data Record , 2010 .

[11]  Eric Rignot,et al.  A Reconciled Estimate of Ice-Sheet Mass Balance , 2012, Science.

[12]  Archie Paulson,et al.  FAST TRACK PAPER: Inference of mantle viscosity from GRACE and relative sea level data , 2007 .

[13]  J. Willis,et al.  Assessing the globally averaged sea level budget on seasonal to interannual timescales , 2008 .

[14]  Josh K. Willis,et al.  Balancing the Sea Level Budget , 2011 .

[15]  Iroshnikova Es Sea Level Variations , 1931 .

[16]  Gregory C. Johnson,et al.  In Situ Data Biases and Recent Ocean Heat Content Variability , 2009 .

[17]  M. Tamisiea,et al.  Ongoing glacial isostatic contributions to observations of sea level change , 2011 .

[18]  L. Vermeersen,et al.  Constraints on Glacial Isostatic Adjustment from GOCE and Sea Level Data , 2009 .

[19]  Shannon T. Brown,et al.  Assessment of the Jason-2 Extension to the TOPEX/Poseidon, Jason-1 Sea-Surface Height Time Series for Global Mean Sea Level Monitoring , 2010 .

[20]  J. Wahr,et al.  Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada , 2012 .

[21]  Byron D. Tapley,et al.  Accelerated Antarctic ice loss from satellite gravity measurements , 2009 .

[22]  R. Steven Nerem,et al.  Ocean mass from GRACE and glacial isostatic adjustment , 2010 .

[23]  Lee-Lueng Fu,et al.  Combining altimeter and subsurface float data to estimate the time‐averaged circulation in the upper ocean , 2008 .

[24]  S. Riser,et al.  The ARGO Project: Global Ocean Observations for Understanding and Prediction of Climate Variability. Report for Calendar Year 2004 , 2000 .

[25]  R. Steven Nerem,et al.  The 2011 La Niña: So strong, the oceans fell , 2012 .

[26]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[27]  Gregory C. Johnson,et al.  Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets* , 2010 .

[28]  E. J. Christensen,et al.  TOPEX/POSEIDON mission overview , 1994 .

[29]  W. R. Peltier,et al.  Closure of the budget of global sea level rise over the GRACE era: the importance and magnitudes of the required corrections for global glacial isostatic adjustment , 2009 .