Stability analysis of positive descriptor systems

Abstract In this paper, we discuss stability properties of positive descriptor systems in the continuous-time as well as in the discrete-time case. We present characterisations of positivity and establish generalised stability criteria for the case of positive descriptor systems. We show that if the spectral projector onto the finite deflating subspace of the matrix pair ( E ,  A ) is nonnegative, then all stability criteria for standard positive systems take a comparably simple form in the positive descriptor case. Furthermore, we provide sufficient conditions that guarantee entry-wise nonnegativity along with positive semidefiniteness of solutions of generalised projected Lyapunov equations. As an application of the framework established throughout this paper, we exemplarily generalise two criteria for the stability of two switched standard positive systems under arbitrary switching to the descriptor case.

[1]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[2]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[3]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[4]  A. Berman,et al.  Positive diagonal solutions to the Lyapunov equations , 1978 .

[5]  M. E. Valcher Controllability and reachability criteria for discrete time positive systems , 1996 .

[6]  F. R. Gantmakher The Theory of Matrices , 1984 .

[7]  T. Damm Rational Matrix Equations in Stochastic Control , 2004 .

[8]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[9]  Y. Ohta,et al.  Reachability, Observability, and Realizability of Continuous-Time Positive Systems , 1984 .

[10]  M. Drazin Pseudo-Inverses in Associative Rings and Semigroups , 1958 .

[11]  Hans Schneider,et al.  Monomial patterns in the sequence Akb , 1987 .

[12]  J. Nieuwenhuis When to call a linear system nonnegative , 1998 .

[13]  Tatjana Stykel,et al.  Stability and inertia theorems for generalized Lyapunov equations , 2002 .

[14]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[15]  M. Araki Application of M-matrices to the stability problems of composite dynamical systems , 1975 .

[16]  Volker Mehrmann,et al.  Generalisation of the Perron–Frobenius theory to matrix pencils , 2008 .

[17]  Brian D. O. Anderson,et al.  New Developments in the Theory of Positive Systems , 1997 .

[18]  R. Bru,et al.  About Positively Discrete-Time Singular Systems ∗ , 2000 .

[19]  S. Rinaldi,et al.  Positive Linear Systems: Theory and Applications , 2000 .

[20]  R. Shorten,et al.  Some results on the stability of positive switched linear systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[21]  U. Ascher,et al.  Numerical Methods for Differential-Algebraic Equations , 1998 .

[22]  Richard S. Varga,et al.  Reactor Criticality and Nonnegative Matrices , 1958 .

[23]  Luca Benvenuti,et al.  Positive and compartmental systems , 2002, IEEE Trans. Autom. Control..

[24]  V. Mehrmann The Autonomous Linear Quadratic Control Problem , 1991 .

[25]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[26]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[27]  E. Griepentrog,et al.  Differential-algebraic equations and their numerical treatment , 1986 .

[28]  Richard S. Varga,et al.  Matrix Iterative Analysis , 2000, The Mathematical Gazette.

[29]  Robert Shorten,et al.  On the simultaneous diagonal stability of a pair of positive linear systems , 2006 .

[30]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[31]  Stephen L. Campbell,et al.  A general form for solvable linear time varying singular systems of differential equations , 1987 .

[32]  Maria Elena Valcher,et al.  Nonnegative linear systems in the behavioral approach: the autonomous case , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[33]  M. T. Qureshi,et al.  Lyapunov Matrix Equation in System Stability and Control , 2008 .

[34]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[35]  P. Coxson,et al.  Positive Input Reachability And Controllability Of Positive Systems , 1987 .

[36]  Carmen Coll,et al.  Structural properties of positive linear time-invariant difference-algebraic equations , 2002 .

[37]  W. Ames Mathematics in Science and Engineering , 1999 .

[38]  J. Zolésio,et al.  Springer series in Computational Mathematics , 1992 .

[39]  Maria Elena Valcher,et al.  On the zero pattern properties and asymptotic behavior of continuous-time positive system trajectories , 2007 .

[40]  Dirk Aeyels,et al.  Stabilization of positive linear systems , 2001, Syst. Control. Lett..

[41]  S. Campbell Singular Systems of Differential Equations , 1980 .

[42]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[43]  Jon Rigelsford,et al.  Positive 1D and 2D Systems , 2002 .

[44]  Linda R. Petzold,et al.  Differential-algebraic equations , 2008, Scholarpedia.

[45]  Roswitha März,et al.  Canonical projectors for linear differential algebraic equations , 1996 .