Analysis of diffusion and dissolution of two-component hydrogen (H + D) in lead lithium

[1]  S. Fukada,et al.  Permeation of Two-Component Hydrogen Isotopes in Lithium-Lead Eutectic Alloy , 2011 .

[2]  A. Sagara,et al.  Effects of simultaneous transfer of heat and tritium through Li–Pb or Flibe blanket , 2010 .

[3]  N. Morley,et al.  An example pathway to a fusion power plant system based on lead–lithium breeder: Comparison of the dual-coolant lead–lithium (DCLL) blanket with the helium-cooled lead–lithium (HCLL) concept as initial step , 2009 .

[4]  S. Fukada,et al.  Isotope Effects of Hydrogen Isotope Absorption and Diffusion in Li0.17Pb0.83 Eutectic Alloy , 2009 .

[5]  T. Norimatsu,et al.  Tritium recovery system for Li–Pb loop of inertial fusion reactor , 2008 .

[6]  Qunying Huang,et al.  Design of auxiliary system for the dual functional lithium-lead test blanket module in ITER , 2006 .

[7]  M. Nishikawa,et al.  Permeation of multi-component hydrogen isotopes through austenitic stainless steels , 1999 .

[8]  T. Terai,et al.  Diffusion coefficient of tritium in molten lithium-lead alloy (Li17Pb83) under neutron irradiation at elevated temperatures , 1992 .

[9]  F. Reiter,et al.  Solubility and diffusivity of hydrogen isotopes in liquid Pb17Li , 1991 .

[10]  E. Veleckis,et al.  A thermodynamic investigation of dilute solutions of hydrogen in liquid Li-Pb alloys , 1984 .

[11]  C. Wu The solubility of deuterium in lithium-lead alloys , 1983 .

[12]  Y. Fujii,et al.  Tritium recovery from neutron irradiated li-pb alloys , 1989 .