Informatics in radiology (infoRAD): introduction to the language of three-dimensional imaging with multidetector CT.

The recent proliferation of multi-detector row computed tomography (CT) has led to an increase in the creation and interpretation of images in planes other than the traditional axial plane. Powerful three-dimensional (3D) applications improve the utility of detailed CT data but also create confusion among radiologists, technologists, and referring clinicians when trying to describe a particular method or type of image. Designing examination protocols that optimize data quality and radiation dose to the patient requires familiarity with the concepts of beam collimation and section collimation as they apply to multi-detector row CT. A basic understanding of the time-limited nature of projection data and the need for thin-section axial reconstruction for 3D applications is necessary to use the available data effectively in clinical practice. The axial reconstruction data can be used to create nonaxial two-dimensional images by means of multiplanar reformation. Multiplanar images can be thickened into slabs with projectional techniques such as average, maximum, and minimum intensity projection; ray sum; and volume rendering. By assigning a full spectrum of opacity values and applying color to the tissue classification system, volume rendering provides a robust and versatile data set for advanced imaging applications.

[1]  M. Prokop,et al.  Spiral and multislice computed tomography of the body , 2003 .

[2]  R. Kikinis,et al.  Three-dimensional segmentation of MR images of the head using probability and connectivity. , 1990, Journal of computer assisted tomography.

[3]  T. Mochizuki,et al.  Thoracic aortic aneurysm and aortic dissection: new endoscopic mode for three-dimensional CT display of aorta. , 1996, Radiology.

[4]  G. Wang,et al.  A study on the section sensitivity profile in multi-row-detector spiral CT. , 2003, Journal of X-ray science and technology.

[5]  W A Kalender,et al.  Physical performance characteristics of spiral CT scanning. , 1991, Medical physics.

[6]  B S Kuszyk,et al.  Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques. , 1995, Radiographics : a review publication of the Radiological Society of North America, Inc.

[7]  G D Rubin,et al.  CT angiography with spiral CT and maximum intensity projection. , 1992, Radiology.

[8]  Jens Krause,et al.  Spiral interpolation algorithms for multislice spiral CT. II. Measurement and evaluation of slice sensitivity profiles and noise at a clinical multislice system , 2000, IEEE Transactions on Medical Imaging.

[9]  M W Vannier,et al.  Multispectral and color-aided displays. , 1989, Investigative radiology.

[10]  Geoffrey D Rubin,et al.  3-D imaging with MDCT. , 2003, European journal of radiology.

[11]  V Argiro,et al.  Perspective volume rendering of CT and MR images: applications for endoscopic imaging. , 1996, Radiology.

[12]  P C Goodman,et al.  Virtual bronchoscopy for directing transbronchial needle aspiration of hilar and mediastinal lymph nodes: a pilot study. , 1998, AJR. American journal of roentgenology.

[13]  D J Vining,et al.  CT cystoscopy: an innovation in bladder imaging. , 1996, AJR. American journal of roentgenology.

[14]  E. Fishman,et al.  Three-dimensional volume rendering of spiral CT data: theory and method. , 1999, Radiographics : a review publication of the Radiological Society of North America, Inc.

[15]  G. Rubin,et al.  Helical (spiral) CT of the retroperitoneum. , 1995, Radiologic clinics of North America.

[16]  W. Kalender,et al.  Evaluation of section sensitivity profiles and image noise in spiral CT. , 1992, Radiology.

[17]  S. Napel,et al.  Three-dimensional spiral CT angiography of the abdomen: initial clinical experience. , 1993, Radiology.

[18]  M. Kalra,et al.  Strategies for CT radiation dose optimization. , 2004, Radiology.

[19]  Haijo Jung,et al.  Quantitative evaluation of acquisition parameters in three-dimensional imaging with multidetector computed tomography using human skull phantom. , 2002, Journal of digital imaging.

[20]  W D Foley,et al.  Four multidetector-row helical CT: image quality and volume coverage speed. , 2000, Radiology.

[21]  Sandy Napel,et al.  Automated generation of curved planar reformations from volume data: method and evaluation. , 2002, Radiology.

[22]  C H McCollough,et al.  Performance evaluation of a multi-slice CT system. , 1999, Medical physics.

[23]  H. McAdams,et al.  Multiplanar and three-dimensional imaging of the thorax. , 2003, Radiologic clinics of North America.

[24]  Janet E. Kuhlman,et al.  Three-dimensional imaging and display of musculoskeletal anatomy. , 1988 .

[25]  C F Beaulieu,et al.  Volume rendering of CT data: applications to the genitourinary tract. , 1997, AJR. American journal of roentgenology.

[26]  M. Silbiger,et al.  PC‐Based Multiparameter Full‐Color Display for Tissue Segmentation in MRI of Adnexal Masses , 1993, Journal of computer assisted tomography.

[27]  E. Fishman,et al.  Automated bone editing algorithm for CT angiography: preliminary results. , 1996, AJR. American journal of roentgenology.

[28]  G D Rubin,et al.  Current status of three-dimensional spiral CT scanning for imaging the vasculature. , 1995, Radiologic clinics of North America.

[29]  J. Hsieh,et al.  A general approach to the reconstruction of x-ray helical computed tomography. , 1996, Medical physics.

[30]  S. Saini Multi-detector row CT: principles and practice for abdominal applications. , 2004, Radiology.

[31]  J. Udupa Three-dimensional visualization and analysis methodologies: a current perspective. , 1999, Radiographics : a review publication of the Radiological Society of North America, Inc.

[32]  M W Vannier,et al.  Spiral CT: decreased spatial resolution in vivo due to broadening of section-sensitivity profile. , 1992, Radiology.

[33]  Yun Liang,et al.  Fundamentals of multichannel CT. , 2003, Seminars in musculoskeletal radiology.

[34]  G D Rubin,et al.  Volumetric analysis of volumetric data: achieving a paradigm shift. , 1996, Radiology.

[35]  Reiner Lenz,et al.  Evaluation of methods for shaded surface display of CT volumes. , 1991 .

[36]  G D Rubin,et al.  STS-MIP: a new reconstruction technique for CT of the chest. , 1993, Journal of computer assisted tomography.

[37]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[38]  David G. Heath,et al.  Skeletal 3-D CT: advantages of volume rendering over surface rendering , 1996, Skeletal Radiology.

[39]  R H Hruban,et al.  Three-dimensional reconstruction of the human body. , 1988, AJR. American journal of roentgenology.

[40]  P. Boiselle Multislice helical CT of the central airways. , 2003, Radiologic clinics of North America.

[41]  R B Jeffrey,et al.  Spiral CT of renal artery stenosis: comparison of three-dimensional rendering techniques. , 1994, Radiology.

[42]  H Hu,et al.  Multi-slice helical CT: scan and reconstruction. , 1999, Medical physics.

[43]  Marc Kachelriess,et al.  Single-slice reconstruction in spiral cone-beam computed tomography , 2000, IEEE Trans. Medical Imaging.

[44]  D G Heath,et al.  Virtual angioscopy using spiral CT and real-time interactive volume-rendering techniques. , 1998, Journal of computer assisted tomography.

[45]  M L Silbiger,et al.  Generation of color composites for enhanced tissue differentiation in magnetic resonance imaging of the brain. , 1991, The American journal of anatomy.

[46]  W A Kalender,et al.  A Comparison of Conventional and Spiral CT: An Experimental Study on the Detection of Spherical Lesions , 1994, Journal of computer assisted tomography.

[47]  M. Mahesh The AAPM/RSNA Physics Tutorial for Residents , 2002 .

[48]  R. Bernstein,et al.  Shading 3D-Images from CT Using Gray-Level Gradients , 1986, IEEE Transactions on Medical Imaging.

[49]  L P Clarke,et al.  Composite and classified color display in MR imaging of the female pelvis. , 1992, Magnetic resonance imaging.

[50]  J Simon,et al.  New technical developments in multislice CT , 2002, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[51]  Pat Hanrahan,et al.  Volume Rendering , 2020, Definitions.

[52]  P. J. Keller,et al.  MR angiography with two-dimensional acquisition and three-dimensional display. Work in progress. , 1989, Radiology.

[53]  S. Rankin,et al.  Spiral CT: vascular applications. , 1998, European journal of radiology.

[54]  P J de Feyter,et al.  Noninvasive coronary imaging using electron beam CT: surface rendering versus volume rendering. , 2003, AJR. American journal of roentgenology.

[55]  D Magid,et al.  Volumetric rendering techniques: applications for three-dimensional imaging of the hip. , 1987, Radiology.

[56]  N. Andreasen,et al.  Color Enhancement of Multispectral MR Images: Improving the Visualization of Subcortical Structures , 2001, Journal of computer assisted tomography.

[57]  R. Ehman,et al.  Colorectal polyp detection with CT colography: two- versus three-dimensional techniques. Work in progress. , 1996, Radiology.

[58]  Kyoung-Sik Cho,et al.  CT angiography for evaluation of living renal donors: comparison of four reconstruction methods. , 2004, AJR. American journal of roentgenology.

[59]  Sandy Napel,et al.  Curved-slab maximum intensity projection: method and evaluation. , 2003, Radiology.

[60]  M. Mahesh Search for isotropic resolution in CT from conventional through multiple-row detector. , 2002, Radiographics : a review publication of the Radiological Society of North America, Inc.

[61]  D Magid,et al.  Three-dimensional volumetric display of CT data: effect of scan parameters upon image quality. , 1991, Journal of computer assisted tomography.