A Review: Electrochemical DNA Biosensors for Sequence Recognition

Abstract Since Waston and Crick established the double helical structure of DNA in 1953, nucleic acid research has become one of the most important fields in life science. Therefore, DNA biosensors based on DNA hybridization plays a more and more important role in DNA analysis. This review briefly introduces our group's research work in the electrochemical DNA biosensor field including DNA immobilization schemes and hybridization marking techniques. The representative immobilization techniques are adsorption on the surface, covalent attachment on a functional surface, embedding in a polymeric matrix, and the self‐assembled monolayer method. The formation of double‐stranded DNA upon hybridization is commonly detected in connection with the use of an appropriate electro‐active hybridization intercalator, or labeling DNA by a simple electro‐active molecule or a powerful nanoparticle.

[1]  P. He,et al.  Electrochemical DNA Biosensor Based on a Thionine–Carbon Nanotube Modified Electrode , 2005 .

[2]  P. He,et al.  A sensitive DNA electrochemical biosensor based on magnetite with a glassy carbon electrode modified by muti-walled carbon nanotubes in polypyrrole , 2005 .

[3]  C. Kumar Welcome to the Journal of Biomedical Nanotechnology , 2005 .

[4]  P. He,et al.  DNA Hybridization at Magnetic Nanoparticles with Electrochemical Stripping Detection , 2004 .

[5]  Martin A. M. Gijs,et al.  Magnetic bead handling on-chip: new opportunities for analytical applications , 2004 .

[6]  Jun Li,et al.  Miniaturized multiplex label-free electronic chip for rapid nucleic acid analysis based on carbon nanotube nanoelectrode arrays. , 2004, Clinical chemistry.

[7]  Ying Xu,et al.  Electrochemical impedance detection of DNA hybridization based on the formation of M-DNA on polypyrrole/carbon nanotube modified electrode , 2004 .

[8]  A. J. Miranda-Ordieres,et al.  Current strategies for electrochemical detection of DNA with solid electrodes , 2004, Analytical and bioanalytical chemistry.

[9]  Lun Wang,et al.  Preparation and application of cysteine-capped ZnS nanoparticles as fluorescence probe in the determination of nucleic acids. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[10]  Ningning Zhu,et al.  Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes , 2004 .

[11]  H. Ju,et al.  Supermolecular Interaction of Ferrocenium with Yeast DNA and Application in Electrochemical Sensing for Hybridization Recognition of Yeast DNA , 2004, Sensors (Basel, Switzerland).

[12]  Ningning Zhu,et al.  Lead Sulfide Nanoparticle as Oligonucleotides Labels for Electrochemical Stripping Detection of DNA Hybridization , 2004 .

[13]  Kenji Yokoyama,et al.  DNA-Conjugated Polymers for Self-Assembled DNA Chip Fabrication , 2004, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[14]  Kagan Kerman,et al.  Recent trends in electrochemical DNA biosensor technology , 2004 .

[15]  Yuan Hong Yu,et al.  Highly sensitive amperometric detection of genomic DNA in animal tissues. , 2004, Nucleic acids research.

[16]  P. He,et al.  Probing DNA Hybridization by Impedance Measurement Based on CdS‐Oligonucleotide Nanoconjugates , 2004 .

[17]  C. Chaix,et al.  Automated synthesis of new ferrocenyl-modified oligonucleotides: study of their properties in solution. , 2004, Nucleic acids research.

[18]  Ying Xu,et al.  Indicator Free DNA Hybridization Detection by Impedance Measurement Based on the DNA‐Doped Conducting Polymer Film Formed on the Carbon Nanotube Modified Electrode , 2003 .

[19]  Joel S. Silverman,et al.  Detection of Attomole Quantitites of DNA Targets on Gold Microelectrodes by Electrocatalytic Nucleobase Oxidation , 2003 .

[20]  Ningning Zhu,et al.  Cu@Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization. , 2003, Biosensors & bioelectronics.

[21]  C. Mirkin,et al.  Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins , 2003, Science.

[22]  Kemin Wang,et al.  Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers. , 2003, Analytical chemistry.

[23]  Ningning Zhu,et al.  Tris(2,2′-bipyridyl)cobalt(III)-doped silica nanoparticle DNA probe for the electrochemical detection of DNA hybridization , 2003 .

[24]  Ningning Zhu,et al.  Cadmium sulfide nanocluster-based electrochemical stripping detection of DNA hybridization. , 2003, The Analyst.

[25]  Ning Gu,et al.  Preparation and characterization of magnetite nanoparticles coated by amino silane , 2003 .

[26]  P. He,et al.  Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection , 2003, Analytical and bioanalytical chemistry.

[27]  Wang Yan Studies on an Electrochemical DNA Biosensor Based on Gold Nanoparticle-labeled DNA Probe , 2003 .

[28]  P. Sorger,et al.  Electronic detection of DNA by its intrinsic molecular charge , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  P. He,et al.  Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label , 2002 .

[30]  J. Justin Gooding,et al.  Evidence for the direct interaction between methylene blue and guanine bases using DNA-modified carbon paste electrodes , 2002 .

[31]  Itamar Willner,et al.  Amplified DNA detection by electrogenerated biochemiluminescence and by the catalyzed precipitation of an insoluble product on electrodes in the presence of the doxorubicin intercalator. , 2002, Angewandte Chemie.

[32]  P. He,et al.  Study on the electrochemiluminescence behavior of ABEI and its application in DNA hybridization analysis. , 2002, The Analyst.

[33]  Jing-Juan Xu,et al.  ZrO(2) gel-derived DNA-modified electrode and the effect of lanthanide on its electron transfer behavior. , 2002, Bioelectrochemistry.

[34]  J. Justin Gooding,et al.  Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes , 2002 .

[35]  Angela Relógio,et al.  Optimization of oligonucleotide-based DNA microarrays. , 2002, Nucleic acids research.

[36]  Ningning Zhu,et al.  An electrochemical DNA hybridization detection assay based on a silver nanoparticle label. , 2002, The Analyst.

[37]  D. Castner,et al.  Characterization of a cysteine-containing peptide tether immobilized onto a gold surface , 2002 .

[38]  Zhongping Huang,et al.  Electrochemical synthesis of polypyrrole films over each of well-aligned carbon nanotubes , 2001 .

[39]  Joseph Wang,et al.  Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. , 2001, Analytical chemistry.

[40]  W. Tan,et al.  Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. , 2001, Analytical chemistry.

[41]  P. He,et al.  Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA , 2001 .

[42]  M. Hogan,et al.  Oligonucleotides form a duplex with non-helical properties on a positively charged surface. , 2001, Nucleic acids research.

[43]  P. He,et al.  Characterization of single-stranded DNA on chitosan-modified electrode and its application to the sequence-specific DNA detection , 2001, Fresenius' journal of analytical chemistry.

[44]  Z. Gu,et al.  Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode. , 2001, Analytical chemistry.

[45]  F. Zhou,et al.  Surface Structure and Coverage of an Oligonucleotide Probe Tethered onto a Gold Substrate and Its Hybridization Efficiency for a Polynucleotide Target , 2001 .

[46]  P He,et al.  Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA. , 2001, The Analyst.

[47]  H. Pin Studies on the Synthesis and Characters of Ferrocene Labeled DNA Probe , 2001 .

[48]  Yang Wen A Kind of CdS Nanocluster with Free Carboxyl Groups on Its Surface , 2001 .

[49]  M. B. González-García,et al.  Electrochemical determination of gold nanoparticles in colloidal solutions , 2000 .

[50]  A. Steel,et al.  Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. , 2000, Biophysical journal.

[51]  P. He,et al.  Ferrocenecarboxaldehyde labeled DNA probe for the study on DNA damage and protection , 2000, Fresenius' journal of analytical chemistry.

[52]  P. He,et al.  Electrochemical labeled DNA probe for the detection of sequence-specific DNA , 2000 .

[53]  H. Pin Studies on the Preparation and Characterization of Ethidium Bromide Labeled DNA Probe , 2000 .

[54]  I. Willner,et al.  Amplified Microgravimetric Quartz-Crystal-Microbalance Assay of DNA Using Oligonucleotide-Functionalized Liposomes or Biotinylated Liposomes , 2000 .

[55]  Joseph Wang,et al.  New label-free DNA recognition based on doping nucleic-acid probes within conducting polymer films , 1999 .

[56]  Peter E. Nielsen,et al.  Reduction and Oxidation of Peptide Nucleic Acid and DNA at Mercury and Carbon Electrodes , 1999 .

[57]  D. Pang,et al.  DNA-modified electrodes; part 4: optimization of covalent immobilization of DNA on self-assembled monolayers. , 1999, Talanta.

[58]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[59]  Giovanna Marrazza,et al.  Disposable DNA electrochemical biosensors for environmental monitoring , 1999 .

[60]  G. Marrazza,et al.  Disposable DNA electrochemical sensor for hybridization detection. , 1999, Biosensors & bioelectronics.

[61]  Boris Filanovsky,et al.  Photoswitchable Antigen−Antibody Interactions Studied by Impedance Spectroscopy , 1998 .

[62]  P. He,et al.  Immobilization of single-stranded deoxyribonucleic acid on gold electrode with self-assembled aminoethanethiol monolayer for DNA electrochemical sensor applications. , 1998, Talanta.

[63]  V. Vetterl,et al.  Adsorption of single-stranded and double-helical polyadenylic acid at the mercury drop electrode , 1998 .

[64]  T J Smith,et al.  Chitosan‐membrane interactions and their probable role in chitosan‐mediated transfection , 1998, Biotechnology and applied biochemistry.

[65]  E. Wilson Instant DNA Detection: Systems based on electrical signals move from science fiction to reality , 1998 .

[66]  E. Braun,et al.  DNA-templated assembly and electrode attachment of a conducting silver wire , 1998, Nature.

[67]  T. Mallouk,et al.  A “Mix and Match” Ionic−Covalent Strategy for Self-Assembly of Inorganic Multilayer Films , 1997 .

[68]  A. Shchyolkina,et al.  Stabilizing and destabilizing effects of intercalators on DNA triplexes , 1997, FEBS letters.

[69]  H. Hayatsu,et al.  Polynucleotide-chitosan complex, an insoluble but reactive form of polynucleotide. , 1997, Chemical & pharmaceutical bulletin.

[70]  Hafsa Korri-Youssoufi,et al.  Toward Bioelectronics: Specific DNA Recognition Based on an Oligonucleotide-Functionalized Polypyrrole , 1997 .

[71]  G. Urban,et al.  Surface techniques for an electrochemical DNA biosensor , 1997 .

[72]  A. J. McQuillan,et al.  An Infrared Spectroscopic Study of Carbonate Adsorption to Zirconium Dioxide Sol−Gel Films from Aqueous Solutions , 1997 .

[73]  Gustavo Rivas,et al.  Sequence-specific electrochemical biosensing of M. tuberculosis DNA , 1997 .

[74]  P. He,et al.  Voltammetric determination of sequence-specific DNA by electroactive intercalator on graphite electrode , 1996 .

[75]  G. Marrazza,et al.  Electrochemical DNA Probes , 1996 .

[76]  J. Tamaoka,et al.  Improved immobilization of DNA to microwell plates for DNA-DNA hybridization. , 1996, Nucleic acids research.

[77]  D. Pang,et al.  Modification of glassy carbon and gold electrodes with DNA , 1996 .

[78]  Joseph Wang,et al.  Adsorptive stripping potentiometry of DNA at electrochemically pretreated carbon paste electrodes , 1996 .

[79]  M. G. García,et al.  Adsorptive stripping voltammetric behaviour of colloidal gold and immunogold on carbon paste electrode , 1995 .

[80]  I. Willner,et al.  Organization of Au Colloids as Monolayer Films onto ITO Glass Surfaces: Application of the Metal Colloid Films as Base Interfaces To Construct Redox-Active Monolayers , 1995 .

[81]  K. M. Millan,et al.  Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. , 1994, Analytical chemistry.

[82]  J. S. Lee,et al.  A cooperative conformational change in duplex DNA induced by Zn2+ and other divalent metal ions. , 1993, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[83]  W. Kuhr,et al.  Enzyme-modified carbon-fiber microelectrodes with millisecond response times , 1991 .

[84]  V. Vasić,et al.  Transient bleaching of small lead sulfide colloids: influence of surface properties , 1990 .

[85]  S. Takenaka,et al.  Bis-9-acridinyl derivative containing a viologen linker chain: electrochemically active intercalator for reversible labelling of DNA , 1990 .

[86]  Valmir F. Juliano,et al.  Electrochemical study of polypyrrole/dodecyl sulphate , 1989 .

[87]  S. S. Ghosh,et al.  Covalent attachment of oligonucleotides to solid supports , 1987, Nucleic Acids Res..

[88]  M. Albrecht,et al.  Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength , 1979 .