Detection of Gauss–Markov Random Fields With Nearest-Neighbor Dependency

The problem of hypothesis testing against independence for a Gauss-Markov random field (GMRF) is analyzed. Assuming an acyclic dependency graph, an expression for the log-likelihood ratio of detection is derived. Assuming random placement of nodes over a large region according to the Poisson or uniform distribution and nearest-neighbor dependency graph, the error exponent of the Neyman-Pearson detector is derived using large-deviations theory. The error exponent is expressed as a dependency-graph functional and the limit is evaluated through a special law of large numbers for stabilizing graph functionals. The exponent is analyzed for different values of the variance ratio and correlation. It is found that a more correlated GMRF has a higher exponent at low values of the variance ratio whereas the situation is reversed at high values of the variance ratio.

[1]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[2]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[3]  S. Varadhan,et al.  Large deviations for stationary Gaussian processes , 1985 .

[4]  Rudolf Ahlswede,et al.  Hypothesis testing with communication constraints , 1986, IEEE Trans. Inf. Theory.

[5]  J. Steele Probability theory and combinatorial optimization , 1987 .

[6]  L. Devroye THE EXPECTED SIZE OF SOME GRAPHS IN COMPUTATIONAL GEOMETRY , 1988 .

[7]  Gerald R. Benitz,et al.  Large deviation rate calculations for nonlinear detectors in Gaussian noise , 1990, IEEE Trans. Inf. Theory.

[8]  Randall K. Bahr Asymptotic analysis of error probabilities for the nonzero-mean Gaussian hypothesis testing problem , 1990, IEEE Trans. Inf. Theory.

[9]  I. Vajda Distances and discrimination rates for stochastic processes , 1990 .

[10]  James A. Bucklew,et al.  Optimal sampling schemes for the Gaussian hypothesis testing problem , 1990, IEEE Trans. Acoust. Speech Signal Process..

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  Nikhil Balram,et al.  Recursive structure of noncausal Gauss-Markov random fields , 1992, IEEE Trans. Inf. Theory.

[13]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[14]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[15]  A. Dembo,et al.  Large Deviations for Quadratic Functionals of Gaussian Processes , 1993 .

[16]  A. Rukhin,et al.  Adaptive tests for stochastic processes in the ergodic case , 1993 .

[17]  W. Bryc,et al.  On the large deviation principle for a quadratic functional of the autoregressive process , 1993 .

[18]  Xavier Guyon,et al.  Random fields on a network , 1995 .

[19]  Mauro Piccioni,et al.  Optimal importance sampling for some quadratic forms of ARMA processes , 1995, IEEE Trans. Inf. Theory.

[20]  Po-Ning Chen General formulas for the Neyman-Pearson type-II error exponent subject to fixed and exponential type-I error bounds , 1996, IEEE Trans. Inf. Theory.

[21]  L. Baxter Random Fields on a Network: Modeling, Statistics, and Applications , 1996 .

[22]  José M. F. Moura,et al.  Gauss-Markov random fields (CMrf) with continuous indices , 1997, IEEE Trans. Inf. Theory.

[23]  B. Bercu,et al.  Large deviations for quadratic forms of stationary Gaussian processes , 1997 .

[24]  P. Brooker,et al.  INACCURACIES ASSOCIATED WITH ESTIMATING RANDOM MEASUREMENT ERRORS , 1997 .

[25]  M. Barangé,et al.  Spatial structure of co-occurring anchovy and sardine populations from acoustic data: implications for survey design , 1997 .

[26]  David Eppstein,et al.  On Nearest-Neighbor Graphs , 1992, ICALP.

[27]  H. Vincent Poor,et al.  Detection of Stochastic Processes , 1998, IEEE Trans. Inf. Theory.

[28]  C. Zong,et al.  The Kissing Numbers of Convex Bodies — A Brief Survey , 1998 .

[29]  Shun-ichi Amari,et al.  Statistical Inference Under Multiterminal Data Compression , 1998, IEEE Trans. Inf. Theory.

[30]  David J. Spiegelhalter,et al.  Probabilistic Networks and Expert Systems , 1999, Information Science and Statistics.

[31]  José M. F. Moura,et al.  Matrices with banded inverses: Inversion algorithms and factorization of Gauss-Markov processes , 2000, IEEE Trans. Inf. Theory.

[32]  Grundmann,et al.  Geostatistical analysis of the distribution of NH(4)(+) and NO(2)(-)-oxidizing bacteria and serotypes at the millimeter scale along a soil transect. , 2000, FEMS microbiology ecology.

[33]  Te Sun Han Hypothesis testing with the general source , 2000, IEEE Trans. Inf. Theory.

[34]  J. Yukich,et al.  Central limit theorems for some graphs in computational geometry , 2001 .

[35]  B. Bercu,et al.  Sharp Large Deviations for the Ornstein--Uhlenbeck Process , 2002 .

[36]  H. Rue,et al.  Fitting Gaussian Markov Random Fields to Gaussian Fields , 2002 .

[37]  J. Yukich,et al.  Limit theory for random sequential packing and deposition , 2002 .

[38]  J. Yukich,et al.  Weak laws of large numbers in geometric probability , 2003 .

[39]  J. Møller,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2003 .

[40]  Martin J. Wainwright,et al.  Tree-based reparameterization framework for analysis of sum-product and related algorithms , 2003, IEEE Trans. Inf. Theory.

[41]  Maliha S. Nash,et al.  Spatial Statistics and Computational Methods , 2004, Technometrics.

[42]  H. Rue,et al.  Norges Teknisk-naturvitenskapelige Universitet Approximating Hidden Gaussian Markov Random Fields Approximating Hidden Gaussian Markov Random Fields , 2003 .

[43]  Venugopal V. Veeravalli,et al.  Design of sensor networks for detection applications via large-deviation theory , 2004, Information Theory Workshop.

[44]  José M. F. Moura,et al.  Block matrices with L-block-banded inverse: inversion algorithms , 2005, IEEE Transactions on Signal Processing.

[45]  H. Vincent Poor,et al.  Neyman-pearson detection of gauss-Markov signals in noise: closed-form error exponentand properties , 2005, IEEE Transactions on Information Theory.

[46]  H. Vincent Poor,et al.  Neyman-Pearson Detection of Gauss-Markov Signals in Noise: Closed-Form Error Exponent and Properties , 2005, ISIT.

[47]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[48]  Lang Tong,et al.  A Large Deviation Analysis of Detection Over Multi-Access Channels with Random Number of Sensors , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[49]  L. Tong,et al.  Detection of Gauss-Markov Random Fields under Routing Energy Constraint , 2007 .

[50]  Peter Congdon,et al.  Gaussian Markov Random Fields: Theory and Applications , 2007 .

[51]  A. Wade Explicit laws of large numbers for random nearest-neighbour-type graphs , 2006, Advances in Applied Probability.

[52]  Ananthram Swami,et al.  Minimum Cost Data Aggregation with Localized Processing for Statistical Inference , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[53]  Ananthram Swami,et al.  Optimal Node Density for Detection in Energy-Constrained Random Networks , 2008, IEEE Transactions on Signal Processing.

[54]  Ananthram Swami,et al.  Cost-performance tradeoff in multi-hop aggregation for statistical inference , 2008, 2008 IEEE International Symposium on Information Theory.

[55]  R. Pace,et al.  Closed‐Form Maximum Likelihood Estimates of Nearest Neighbor Spatial Dependence , 2010 .

[56]  Adrian Baddeley,et al.  A crash course in stochastic geometry , 2019, Stochastic Geometry.