Quantum algorithms: an overview

Quantum computers are designed to outperform standard computers by running quantum algorithms. Areas in which quantum algorithms can be applied include cryptography, search and optimisation, simulation of quantum systems and solving large systems of linear equations. Here we briefly survey some known quantum algorithms, with an emphasis on a broad overview of their applications rather than their technical details. We include a discussion of recent developments and near-term applications of quantum algorithms.

[1]  Graeme Smith,et al.  Oversimplifying quantum factoring , 2013, Nature.

[2]  Andris Ambainis,et al.  The Quantum Communication Complexity of Sampling , 2003, SIAM J. Comput..

[3]  Miklos Santha On the Monte Carlo Boolean decision tree complexity of read-once formulae , 1991, [1991] Proceedings of the Sixth Annual Structure in Complexity Theory Conference.

[4]  Alain Tapp,et al.  Quantum Entanglement and the Communication Complexity of the Inner Product Function , 1998, QCQC.

[5]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[6]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem , 2014, 1412.6062.

[7]  William J. Munro,et al.  Using Quantum Computers for Quantum Simulation , 2010, Entropy.

[8]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[9]  Umesh V. Vazirani,et al.  How powerful is adiabatic quantum computation? , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[10]  Andrew M. Childs,et al.  Hamiltonian Simulation with Nearly Optimal Dependence on all Parameters , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[11]  F. Verstraete,et al.  Computational complexity of interacting electrons and fundamental limitations of density functional theory , 2007, 0712.0483.

[12]  G. Guerreschi,et al.  Boson sampling for molecular vibronic spectra , 2014, Nature Photonics.

[13]  W. Dur,et al.  Quantum algorithms for classical lattice models , 2011, 1104.2517.

[14]  Andris Ambainis,et al.  Any AND-OR Formula of Size N Can Be Evaluated in Time N1/2+o(1) on a Quantum Computer , 2010, SIAM J. Comput..

[15]  Don Coppersmith Advances in Cryptology — CRYPT0’ 95 , 1995, Lecture Notes in Computer Science.

[16]  W. Marsden I and J , 2012 .

[17]  Marco Lanzagorta,et al.  Quantum Simulators , 2013 .

[18]  Ryan Williams,et al.  Improving exhaustive search implies superpolynomial lower bounds , 2010, STOC '10.

[19]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[20]  Aram W. Harrow,et al.  Quantum algorithm for solving linear systems of equations , 2010 .

[21]  Catherine C. McGeoch,et al.  Benchmarking a quantum annealing processor with the time-to-target metric , 2015, 1508.05087.

[22]  Carl Pomerance,et al.  The Development of the Number Field Sieve , 1994 .

[23]  Cong Wang,et al.  Experimental evaluation of an adiabiatic quantum system for combinatorial optimization , 2013, CF '13.

[24]  Edward Farhi,et al.  An Example of the Difference Between Quantum and Classical Random Walks , 2002, Quantum Inf. Process..

[25]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[26]  L. Vandersypen,et al.  Implementation of a three-quantum-bit search algorithm , 1999, quant-ph/9910075.

[27]  Mile Gu,et al.  Experimental quantum computing to solve systems of linear equations. , 2013, Physical review letters.

[28]  Cedric Yen-Yu Lin,et al.  Upper Bounds on Quantum Query Complexity Inspired by the Elitzur--Vaidman Bomb Tester , 2014, Theory Comput..

[29]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[30]  Daniel A. Spielman,et al.  Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.

[31]  Ben Reichardt,et al.  Span Programs and Quantum Query Complexity: The General Adversary Bound Is Nearly Tight for Every Boolean Function , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[32]  Tal Rabin Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings , 2010, CRYPTO.

[33]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[34]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[35]  M. Wilde Quantum Information Theory: Noisy Quantum Shannon Theory , 2013 .

[36]  Vicky Choi,et al.  Different adiabatic quantum optimization algorithms for the NP-complete exact cover problem , 2010, Proceedings of the National Academy of Sciences.

[37]  Arjen K. Lenstra,et al.  Factorization of a 768-Bit RSA Modulus , 2010, CRYPTO.

[38]  Uwe Schöning A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems , 1999, FOCS.

[39]  Christoph Dürr,et al.  A Quantum Algorithm for Finding the Minimum , 1996, ArXiv.

[40]  F. Nori,et al.  Quantum Simulators , 2009, Science.

[41]  Frédéric Magniez,et al.  Search via quantum walk , 2006, STOC '07.

[42]  Greg Kuperberg A Subexponential-Time Quantum Algorithm for the Dihedral Hidden Subgroup Problem , 2005, SIAM J. Comput..

[43]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[44]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[45]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[46]  Andris Ambainis,et al.  Variable time amplitude amplification and a faster quantum algorithm for solving systems of linear equations , 2010, ArXiv.

[47]  S. Aaronson Read the fine print , 2015, Nature Physics.

[48]  Ronald de Wolf,et al.  Quantum Proofs for Classical Theorems , 2009, Theory Comput..

[49]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[50]  Julia Kempe,et al.  Quantum Random Walks Hit Exponentially Faster , 2002, ArXiv.

[51]  B. D. Clader,et al.  Preconditioned quantum linear system algorithm. , 2013, Physical review letters.

[52]  Aleksandrs Belovs,et al.  Quantum Algorithms for Learning Symmetric Juntas via the Adversary Bound , 2013, 2014 IEEE 29th Conference on Computational Complexity (CCC).

[53]  X-Q Zhou,et al.  Experimental realization of Shor's quantum factoring algorithm using qubit recycling , 2011, Nature Photonics.

[54]  Jian-Wei Pan,et al.  Experimental realization of quantum algorithm for solving linear systems of equations , 2013, 1302.1946.

[55]  Scott Aaronson,et al.  Quantum Machine Learning Algorithms : Read the Fine Print , 2015 .

[56]  Christof Zalka,et al.  Shor's discrete logarithm quantum algorithm for elliptic curves , 2003, Quantum Inf. Comput..

[57]  Philip Walther,et al.  2 a b c d State qubit : Eigenvalue qubit : Ancilla qubit : 1 , 2013 .

[58]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[59]  Andrew M. Childs,et al.  ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN TIME N ON A QUANTUM COMPUTER∗ , 2010 .

[60]  David Poulin,et al.  The Trotter step size required for accurate quantum simulation of quantum chemistry , 2014, Quantum Inf. Comput..

[61]  R. Cleve,et al.  Nonlocality and communication complexity , 2009, 0907.3584.

[62]  Alain Tapp,et al.  Quantum Entanglement and the Communication Complexity of the Inner Product Function , 1997, QCQC.

[63]  Vicky Choi Different Adiabatic Quantum Optimization Algorithms for the NP-Complete Exact Cover and 3SAT Problems , 2010, ArXiv.

[64]  Sebastian Dörn Quantum Algorithms for Algebraic Problems ∗ , 2008 .

[65]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[66]  Oded Regev,et al.  Quantum computation and lattice problems , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[67]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[68]  Adam D. Bookatz QMA-complete problems , 2012, Quantum Inf. Comput..

[69]  Tobias J. Osborne,et al.  A quantum algorithm to solve nonlinear differential equations , 2008, 0812.4423.

[70]  Timothy C. Ralph,et al.  Boson sampling on a chip , 2013, Nature Photonics.

[71]  Ashley Montanaro,et al.  Quantum Pattern Matching Fast on Average , 2014, Algorithmica.

[72]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[73]  Christof Zalka GROVER'S QUANTUM SEARCHING ALGORITHM IS OPTIMAL , 1997, quant-ph/9711070.

[74]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[75]  François Le Gall,et al.  Improved Quantum Algorithm for Triangle Finding via Combinatorial Arguments , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[76]  Julia Kempe,et al.  Discrete Quantum Walks Hit Exponentially Faster , 2003, RANDOM-APPROX.

[77]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[78]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[79]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[80]  John Preskill,et al.  Quantum Algorithms for Quantum Field Theories , 2011, Science.

[81]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[82]  Andris Ambainis,et al.  Quantum walks on graphs , 2000, STOC '01.

[83]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[84]  H. Lenstra,et al.  Factoring integers with the number field sieve , 1993 .

[85]  Mehdi Mhalla,et al.  Quantum Query Complexity of Some Graph Problems , 2004, SIAM J. Comput..

[86]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[87]  Umesh V. Vazirani,et al.  Quantum Algorithms , 2001, LATIN.

[88]  Ramesh Hariharan,et al.  String matching in Õ(sqrt(n)+sqrt(m)) quantum time , 2003, J. Discrete Algorithms.

[89]  Andrew M. Childs,et al.  ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN TIME N1/2+o(1) ON A QUANTUM COMPUTER , 2010 .

[90]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[91]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[92]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[93]  Edward Farhi,et al.  HOW TO MAKE THE QUANTUM ADIABATIC ALGORITHM FAIL , 2005 .

[94]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[95]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..

[96]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[97]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[98]  Dave Bacon,et al.  Recent progress in quantum algorithms , 2010, Commun. ACM.

[99]  Gilles Brassard,et al.  An exact quantum polynomial-time algorithm for Simon's problem , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[100]  J. Eisert,et al.  Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas , 2011, Nature Physics.

[101]  Timothy F. Havel,et al.  Quantum Simulations on a Quantum Computer , 1999, quant-ph/9905045.

[102]  Prasad Raghavendra,et al.  Beating the random assignment on constraint satisfaction problems of bounded degree , 2015, Electron. Colloquium Comput. Complex..

[103]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[104]  O. Regev A Subexponential Time Algorithm for the Dihedral Hidden Subgroup Problem with Polynomial Space , 2004, quant-ph/0406151.

[105]  Richard J. Lipton,et al.  Quantum Cryptanalysis of Hidden Linear Functions (Extended Abstract) , 1995, CRYPTO.

[106]  R. Feynman Simulating physics with computers , 1999 .

[107]  Andris Ambainis,et al.  Any AND-OR Formula of Size N can be Evaluated in time N^{1/2 + o(1)} on a Quantum Computer , 2010, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[108]  Edward Farhi,et al.  Quantum adiabatic algorithms, small gaps, and different paths , 2009, Quantum Inf. Comput..

[109]  Armin Biere,et al.  A survey of recent advances in SAT-based formal verification , 2005, International Journal on Software Tools for Technology Transfer.