Monitoring wildfires using an autonomous aerial system (AAS)

The environmental and health effects of wildfires are discussed. The monitoring of wildfires from aircraft using remote sensing techniques is reviewed. A future autonomous aerial observing system for fire monitoring is described.

[1]  J. Dozier A method for satellite identification of surface temperature fields of subpixel resolution , 1981 .

[2]  G. J. Holland,et al.  The Aerosonde Robotic Aircraft: A New Paradigm for Environmental Observations , 2001 .

[3]  P. Crutzen,et al.  Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS , 1979, Nature.

[4]  Johann G. Goldammer,et al.  Fire in the Environment: The Ecological, Atmospheric, and Climatic Importance of Vegetation Fires , 1994 .

[5]  Tad McGeer,et al.  Autonomous aerosondes for economical atmospheric soundings anywhere on the globe , 1992 .

[6]  J. Levine Biomass Burning: Its History, Use, and Distribution and Its Impact on Environmental Quality and Global Climate , 1991 .

[7]  Michael D. King,et al.  SCAR‐B fires in the tropics: Properties and remote sensing from EOS‐MODIS , 1998 .

[8]  John R. Coleman,et al.  A Fire Perimeter Expansion Algorithm-Based on Huygens Wavelet Propagation , 1993 .

[9]  M. Radojević,et al.  Forest fires and regional Haze in Southeast Asia , 2001 .

[10]  P. Crutzen,et al.  Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning , 1980 .

[11]  M. Verstraete,et al.  Biomass burning and its inter-relationships with the climate system , 2000 .

[12]  J. Levine,et al.  Biomass Burning: The Cycling of Gases and Particulates from the Biosphere to the Atmosphere , 2003 .

[13]  M. Vasconcelos,et al.  Firemap - Simulation of fire growth with a geographic information system , 1992 .

[14]  D. Roy,et al.  Algorithm Technical Background Document , 2006 .

[15]  G. Richards,et al.  A Computer Algorithm for Simulating the Spread of Wildland Fire Perimeters for Heterogeneous Fuel and Meteorological Conditions , 1995 .

[16]  N. Cheney,et al.  Prediction of Fire Spread in Grasslands , 1998 .

[17]  Lawrence F. Radke,et al.  Mercury in smoke from biomass fires , 2001 .

[18]  Steven S. Wegener,et al.  Lessons Learned from NASA UAV Science Demonstration Program Missions , 2003 .

[19]  James M. Vose,et al.  Biomass Burning and Global Change Volume 2 Biomass Burning in South America , Southeast Asia , and Temperate and Boreal Ecosystems , and the Oil Fires of Kuwait , 2003 .

[20]  Joel S. Levine,et al.  Remote sensing, modeling and inventory development, and biomass burning in Africa , 1996 .

[21]  John H. Del Frate,et al.  Recent Flight Test Experience with Uninhabited Aerial Vehicles at the NASA Dryden Flight Research Center , 1998 .

[22]  James A. Brass,et al.  An Integration of Remote Sensing, GIs, and Information Distribution for Wildfire Detection and Management , 1998 .

[23]  J. Levine,et al.  Biomass Burning: A Driver for Global Change! , 1995 .

[24]  J. G. Goldammer,et al.  Fire in the Tropical Biota. Ecosystem Processes and Global Challenges , 1993 .

[25]  Eric S. Kasischke,et al.  Fire, Climate Change, and Carbon Cycling in the Boreal Forest , 2000, Ecological Studies.

[26]  Alfredo Ramirez Global Hawk - Persistent, Long Range, High Altitude, Multi-Int Capability for the US Air Force and the Battlefield Commander , 2003 .

[27]  Vincent G. Ambrosia High altitude aircraft remote sensing during the 1988 Yellowstone national park wildfires , 1990 .

[28]  P. Crutzen,et al.  Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles , 1990, Science.

[29]  Stephen E. Dunagan,et al.  Demonstrating UAV-acquired real-time thermal data over fires , 2003 .

[30]  John Langford,et al.  High Altitude UAVs for Atmospheric Science: A Decade of Experience , 2002 .

[31]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[32]  D. Roy,et al.  The MODIS fire products , 2002 .

[33]  J. Brass,et al.  Thermal analysis of wildfires and effects on global ecosystem cycling , 1988 .

[34]  M. Finney FARSITE : Fire Area Simulator : model development and evaluation , 1998 .

[35]  G. Richards An elliptical growth model of forest fire fronts and its numerical solution , 1990 .

[36]  Brian D. Killough,et al.  A semi-empirical cellular automata model for wildfire monitoring from a geosynchronous space platform , 2003 .

[37]  J. Levine Global biomass burning - Atmospheric, climatic, and biospheric implications , 1990 .

[38]  P. Crutzen,et al.  Biomass burning as a source of atmospheric gases , 1979 .

[39]  P. Andrews BEHAVE : Fire Behavior Prediction and Fuel Modeling System - BURN Subsystem, Part 1 , 1986 .

[40]  James A. Brass,et al.  Aircraft and satellite thermographic systems for wildfire mapping and assessment , 1987 .

[41]  John D. Hunley,et al.  ERAST: Scientific Applications and Technology Commercialization , 2000 .

[42]  Gerald C. Holst,et al.  Common Sense Approach to Thermal Imaging , 2000 .

[43]  H. Anderson,et al.  Sundance Fire : an analysis of fire phenomena / , 1968 .

[44]  R. Burgan,et al.  BEHAVE : Fire Behavior Prediction and Fuel Modeling System -- FUEL Subsystem , 1984 .