Structural Optimization of Machine Tools including the static and dynamic Workspace Behavior

The use of topology optimization is helpful to obtain "systematic and proper" solution variants for a given static and dynamic design problem. Those solutions, which can be generated automatically provide the designer with new, previously unknown proposals of machine part structures. Up to now, the static and dynamic behaviour of the workspace was not recognized in such an optimization. The paper introduces the topology optimization of machine tools applying the finite element method (FEM) coupled with the multi-body simulation (MBS). So parts of machine tools can be optimized while taking different critical workspace positions into account. Furthermore changes of the loads and the system behavior can be considered during the optimization process.