Light Production and Gaseous Detectors

Gaseous media may efficiently convert into photons the energy losses of particles and the energy supplied by electric fields to drifting electrons. Some mechanisms associated with the process of light production, in particular the two continua and a few energy transfer phenomena, are considered. The relevance of these processes to control the spectral distribution of the photons, and consequently to its detection, and their interest for the time characteristics and the energy resolution capabilities of detecting devices are also referred to. A few examples are presented of instrumental results that either reflect important characteristics of gas scintillation counters, or point to further possible developments, as regards energy, time and position resolutions.

[1]  K. F. Palmer,et al.  Two- and three-body collision coefficients for Xe( 3 P 1 ) and Xe( 3 P 2 ) atoms and radiative lifetime of the Xe 2 (1 u ) molecule , 1976 .

[2]  P. J. Ebert,et al.  Vacuum-ultraviolet emission from high-pressure xenon and argon excited by high-current relativistic electron beams , 1974 .

[3]  B. Sadoulet,et al.  Application of classical theory of electrons in gases to drift proportional chambers , 1975 .

[4]  V. M. Fedorov,et al.  Transition radiation registration by means of a drift chamber with space resolution 20 μm , 1979 .

[5]  G. Charpak,et al.  An Efficient, Gaseous Detector with Good Low-energy Resolution for (≤50 keV) Imaging , 1979 .

[6]  J. Brunt,et al.  A study of resonance structure in neon, argon, krypton and xenon using metastable excitation by electron impact with high energy resolution , 1976 .

[7]  G. D. Alkhazov,et al.  Ionization fluctuations and resolution of ionization chambers and semiconductor detectors , 1967 .

[8]  F. Sauli Limiting accuracies in multiwire proportional and drift chambers , 1978 .

[9]  G. Charpak,et al.  Scintillating Drift Chambers with Moderate Charge Amplification , 1976, IEEE Transactions on Nuclear Science.

[10]  G. S. Hurst,et al.  Energy transfer from argon resonance states to nitrogen, hydrogen, and nitric oxide , 1975 .

[11]  A. Breskin,et al.  Properties of Very Low Pressure Multiwire Proportional Chambers , 1980, IEEE Transactions on Nuclear Science.

[12]  S. Kubota,et al.  Mechanism of proportional scintillation in argon, krypton and xenon , 1979 .

[13]  W. Tornow,et al.  Properties of high pressure nitrogen-argon and nitrogen-xenon gas scintillators , 1976 .

[14]  J. Brunt,et al.  Near-threshold electron impact excitation of ultraviolet-emitting levels of neon, argon, krypton and xenon atoms , 1977 .

[15]  H. Sipilä Energy resolution of the proportional counter , 1976 .

[16]  P. Leichner,et al.  Time dependence of the vacuum-ultraviolet emissions in krypton excited by 250-KeV electrons , 1974 .

[17]  G. Charpak,et al.  The Multistep Avalanche Chamber: A New High Rate, High Accuracy Gaseous Detector , 1978 .

[18]  David J. Rose,et al.  Basic Processes of Gaseous Electronics , 1956 .

[19]  S. Kubota Non-Metastable Penning Effect in the Alpha-Particle Ionization of Inert Gas Mixtures , 1970 .

[20]  A. Szöke,et al.  Electronic Energy Transfer Phenomena in Rare Gases , 1972 .

[21]  C. E. Brion,et al.  Threshold excitation and ionization of xenon by electron impact , 1969 .

[22]  A. Policarpo,et al.  Localization of ionizing particles with the gas proportional scintillation counter , 1975 .

[23]  G. Charpak,et al.  The Photo-Ionization Proportional Scintillation Chamber , 1980, IEEE Transactions on Nuclear Science.

[24]  G. Charpak,et al.  The Scintillating Drift Chamber: A New Tool for High Accuracy, Very High Rate Particle Localization , 1975 .

[25]  D. Anderson,et al.  A large area, gas scintillation proportional counter , 1979 .

[26]  A. Policarpo Coupling the gas scintillation proportional counter to photoionization detectors , 1978 .

[27]  O. Cheshnovsky,et al.  Electronic energy transfer in rare gas mixtures , 1973 .

[28]  A. Peacock,et al.  A Position Sensitive Gas Scintillation Proportional Counter for X-Ray Astronomy , 1980, IEEE Transactions on Nuclear Science.

[29]  G. S. Hurst,et al.  Time-dependent studies of vacuum-ultraviolet emissions from helium , 1973 .

[30]  R. Sanders,et al.  Velocity dependence of sensitized fluorescence in collisions of metastable argon and helium atoms with nitrogen , 1976 .

[31]  Fabio Sauli,et al.  The multistep avalanche chamber: A new family of fast, high-rate particle detectors , 1979 .

[32]  T. King,et al.  Nonmetastable Penning ionization in He(3$sup 1$P) -Ne, Ar, Kr, Xe collisions , 1975 .

[33]  R. Novick,et al.  A High Resolution Gas Scintillation Proportional Counter for Studying Low Energy Cosmic X-Ray Sources , 1980, IEEE Transactions on Nuclear Science.

[34]  M. Bourène,et al.  Pulse radiolysis study of argon‐nitrogen mixtures. Measurement of the rate constant of metastable argon de‐excitation by nitrogen , 1973 .

[35]  U. Gastaldi The X-ray drift chamber (XDC): Use of conventional MWPCs as drift chambers for detection with high energy resolution of soft X-rays with energy down to 500 eV , 1978 .

[36]  M. Mutterer,et al.  A two-dimensional gas-scintillation drift chamber for heavy-ion detection , 1978 .

[37]  V. M. Fedorov,et al.  The electroluminescenting drift chamber with spatial resolution 16 μm , 1979 .

[38]  R. Andresen,et al.  The nature of the light produced inside a gas scintillation proportional counter , 1977 .

[39]  R. Turner DECAY OF EXCITED SPECIES IN A PULSED DISCHARGE IN KRYPTON. , 1967 .

[40]  G. Charpak,et al.  DETECTION OF FAR-ULTRAVIOLET PHOTONS WITH THE MULTISTEP AVALANCHE CHAMBER. APPLICATION TO CHERENKOV LIGHT IMAGING AND TO SOME PROBLEMS IN HIGH-ENERGY PHYSICS , 1979 .

[41]  M. Mutterer,et al.  A low-pressure noble-gas scintillation counter for heavy-ion detection☆ , 1977 .

[42]  C. Desborough,et al.  Selectivity of X-Ray Detection by a Variable Geometry Proportional Counter , 1969, Nature.

[43]  H. Szwarc,et al.  On xenon molecule excited state lifetimes , 1977 .