Nanostructured titanium surfaces exhibit recalcitrance towards Staphylococcus epidermidis biofilm formation

[1]  E. Gogolides,et al.  Is There a Threshold in the Antibacterial Action of Superhydrophobic Surfaces? , 2017, ACS applied materials & interfaces.

[2]  Hong Chen,et al.  Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities. , 2017, ACS applied materials & interfaces.

[3]  P. Yarlagadda,et al.  Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants , 2017, Journal of Nanobiotechnology.

[4]  K. Ostrikov,et al.  Bactericidal Effects of Natural Nanotopography of Dragonfly Wing on Escherichia coli. , 2017, ACS applied materials & interfaces.

[5]  Eun-Jung Kim,et al.  High Quality Bioreplication of Intricate Nanostructures from a Fragile Gecko Skin Surface with Bactericidal Properties , 2017, Scientific Reports.

[6]  G. Watson,et al.  The nanotipped hairs of gecko skin and biotemplated replicas impair and/or kill pathogenic bacteria with high efficiency. , 2016, Nanoscale.

[7]  B. Su,et al.  Osteogenic and bactericidal surfaces from hydrothermal titania nanowires on titanium substrates , 2016, Scientific Reports.

[8]  Rajbir Kaur,et al.  Antibacterial surface design - Contact kill , 2016 .

[9]  Mehdi Kargar,et al.  Colloidal Crystals Delay Formation of Early Stage Bacterial Biofilms. , 2016, ACS biomaterials science & engineering.

[10]  Mark J. Tobin,et al.  The nature of inherent bactericidal activity: insights from the nanotopology of three species of dragonfly. , 2016, Nanoscale.

[11]  B. Su,et al.  Bactericidal nanospike surfaces via thermal oxidation of Ti alloy substrates , 2016 .

[12]  Jinju Chen,et al.  Influence of surface roughness on the initial formation of biofilm , 2015 .

[13]  C. Moraru,et al.  Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: how small is small enough? , 2015, npj Biofilms and Microbiomes.

[14]  Lirong Zhang,et al.  Theoretical study on the bactericidal nature of nanopatterned surfaces. , 2015, Journal of theoretical biology.

[15]  Saulius Juodkazis,et al.  Antibacterial titanium nano-patterned arrays inspired by dragonfly wings , 2015, Scientific Reports.

[16]  J. Hasan,et al.  Recent advances in engineering topography mediated antibacterial surfaces , 2015, Nanoscale.

[17]  Kaushik Chatterjee,et al.  Engineering a nanostructured “super surface” with superhydrophobic and superkilling properties , 2015, RSC advances.

[18]  Paul Stoodley,et al.  Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges , 2015, FEMS microbiology reviews.

[19]  Eugene P. Chung Effect of Superhydrophobic Titanium Surface on Initial Salivary Pellicle Acquisition and Oral Biofilm Formation , 2015 .

[20]  Spomenka Kobe,et al.  The influence of surface modification on bacterial adhesion to titanium-based substrates. , 2015, ACS applied materials & interfaces.

[21]  D. LaJeunesse,et al.  Adhesion-dependent rupturing of Saccharomyces cerevisiae on biological antimicrobial nanostructured surfaces , 2015, Journal of The Royal Society Interface.

[22]  M. Ryadnov,et al.  Cicada-inspired cell-instructive nanopatterned arrays , 2014, Scientific Reports.

[23]  Hideyuki Sakoda,et al.  Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion , 2014, BMC Microbiology.

[24]  B. Lindeque,et al.  Infection after primary total hip arthroplasty. , 2014, Orthopedics.

[25]  C. Siedlecki,et al.  Staphylococcus epidermidis adhesion on hydrophobic and hydrophilic textured biomaterial surfaces , 2014, Biomedical materials.

[26]  J. Lausmaa,et al.  Role of nanostructured gold surfaces on monocyte activation and Staphylococcus epidermidis biofilm formation , 2014, International journal of nanomedicine.

[27]  Saulius Juodkazis,et al.  Bactericidal activity of black silicon , 2013, Nature Communications.

[28]  E. Ivanova,et al.  Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces , 2013, Applied Microbiology and Biotechnology.

[29]  Elena P Ivanova,et al.  Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. , 2013, Biophysical journal.

[30]  J. Burgess,et al.  Efficacy of a Marine Bacterial Nuclease against Biofilm Forming Microorganisms Isolated from Chronic Rhinosinusitis , 2013, PloS one.

[31]  M. Otto,et al.  Molecular basis of in vivo biofilm formation by bacterial pathogens. , 2012, Chemistry & biology.

[32]  Elena P Ivanova,et al.  Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. , 2012, Small.

[33]  B N Chichkov,et al.  Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium , 2012, Biofouling.

[34]  Vimal Sharma,et al.  Quantitative Characterization of the Influence of the Nanoscale Morphology of Nanostructured Surfaces on Bacterial Adhesion and Biofilm Formation , 2011, PloS one.

[35]  Shravanthi T. Reddy,et al.  Micropatterned surfaces for reducing the risk of catheter-associated urinary tract infection: an in vitro study on the effect of sharklet micropatterned surfaces to inhibit bacterial colonization and migration of uropathogenic Escherichia coli. , 2011, Journal of endourology.

[36]  Liwei Lin,et al.  Patterned Growth of TiO2 Nanowires on Titanium Substrates , 2011 .

[37]  R. Banthia,et al.  Biofilms: A microbial home , 2011, Journal of Indian Society of Periodontology.

[38]  C. Lévesque,et al.  Bacterial biofilm: structure, function, and antimicrobial resistance , 2010 .

[39]  Shinya Matsumoto,et al.  Bacterial adhesion: From mechanism to control , 2010 .

[40]  Megan S. Lord,et al.  Influence of nanoscale surface topography on protein adsorption and cellular response , 2010 .

[41]  Lingzhou Zhao,et al.  Antibacterial coatings on titanium implants. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[42]  M. Otto Staphylococcus epidermidis — the 'accidental' pathogen , 2009, Nature Reviews Microbiology.

[43]  Anfeng Wang,et al.  Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis. , 2009, Journal of Biomedical Materials Research. Part A.

[44]  E. Wickstrom,et al.  The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. , 2008, Biomaterials.

[45]  A. Mills,et al.  A Study of Factors that Change the Wettability of Titania Films , 2008 .

[46]  Hans-Curt Flemming,et al.  The EPS Matrix: The “House of Biofilm Cells” , 2007, Journal of bacteriology.

[47]  A. Roos-Jansåker,et al.  Infection at titanium implants with or without a clinical diagnosis of inflammation. , 2007, Clinical oral implants research.

[48]  James F. Schumacher,et al.  Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus , 2007, Biointerphases.

[49]  Lei Jiang,et al.  Bioinspired surfaces with special wettability. , 2005, Accounts of chemical research.

[50]  Cameron J Wilson,et al.  Mediation of biomaterial-cell interactions by adsorbed proteins: a review. , 2005, Tissue engineering.

[51]  P. Chu,et al.  Surface modification of titanium, titanium alloys, and related materials for biomedical applications , 2004 .

[52]  J. Costerton,et al.  Bacterial biofilms: a diagnostic and therapeutic challenge , 2003, Expert review of anti-infective therapy.

[53]  S. Bhattacharjee,et al.  Effect of Membrane Surface Roughness on Colloid−Membrane DLVO Interactions , 2003 .

[54]  D. Allison,et al.  The Biofilm Matrix , 2003, Biofouling.

[55]  R. Donlan,et al.  Biofilms: Microbial Life on Surfaces , 2002, Emerging infectious diseases.

[56]  D. Mulvihill,et al.  Direct In Situ Viability Assessment of Bacteria in Probiotic Dairy Products Using Viability Staining in Conjunction with Confocal Scanning Laser Microscopy , 2001, Applied and Environmental Microbiology.

[57]  B. Derjaguin,et al.  Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes , 1993 .

[58]  C. V. Oss,et al.  Energetics of cell-cell and cell-biopolymer interactions , 1989, Cell Biophysics.

[59]  M. Chaudhury,et al.  The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces , 1986 .

[60]  P. Erba,et al.  Radionuclide Imaging of Infection and Inflammation , 2013 .

[61]  Hao Wang,et al.  Effect of superhydrophobic surface of titanium on staphylococcus aureus adhesion , 2011 .

[62]  N. Vilaboa,et al.  In vitro biocompatibility and bacterial adhesion of physico-chemically modified Ti6Al4V surface by means of UV irradiation. , 2009, Acta biomaterialia.

[63]  Mitsuo Niinomi,et al.  Mechanical biocompatibilities of titanium alloys for biomedical applications. , 2008, Journal of the mechanical behavior of biomedical materials.

[64]  James D Bryers,et al.  Medical biofilms. , 2008, Biotechnology and bioengineering.

[65]  W. Evans,et al.  Titanium Alloys for Biomedical Applications , 1989 .

[66]  J. Costerton,et al.  Native Aquatic Bacteria: Enumeration, Activity, and Ecology , 1979 .

[67]  J. A. V. BUTLER,et al.  Theory of the Stability of Lyophobic Colloids , 1948, Nature.