ClpC2 protects mycobacteria against a natural antibiotic targeting ClpC1-dependent protein degradation

[1]  I. Sinning,et al.  Antibacterial peptide CyclomarinA creates toxicity by deregulating the Mycobacterium tuberculosis ClpC1–ClpP1P2 protease , 2022, The Journal of biological chemistry.

[2]  S. Abd ElHafeez,et al.  A systematic review and meta-analysis of the catastrophic costs incurred by tuberculosis patients , 2022, Scientific reports.

[3]  J. Nachega,et al.  Global Tuberculosis Report 2020 – Reflections on the Global TB burden, treatment and prevention efforts , 2021, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.

[4]  Ryan R. Chaparian,et al.  Promoter Pull-Down Assay: A Biochemical Screen for DNA-Binding Proteins. , 2020, Methods in molecular biology.

[5]  M. Kaswa,et al.  Outcomes and adverse events of pre- and extensively drug-resistant tuberculosis patients in Kinshasa, Democratique Republic of the Congo: A retrospective cohort study , 2020, PloS one.

[6]  D. Oh,et al.  Structure of the N-terminal domain of ClpC1 in complex with the antituberculosis natural product ecumicin reveals unique binding interactions , 2020, Acta crystallographica. Section D, Structural biology.

[7]  G. Taylor,et al.  Genome‐wide interaction screen for Mycobacterium tuberculosis ClpCP protease reveals toxin–antitoxin systems as a major substrate class , 2020, The FEBS journal.

[8]  Kamila B. Franke,et al.  Toxic Activation of an AAA+ Protease by the Antibacterial Drug Cyclomarin A. , 2019, Cell chemical biology.

[9]  T. Akopian,et al.  Pyrazinamide triggers degradation of its target aspartate decarboxylase , 2019, Nature Communications.

[10]  C. Abad-Zapatero,et al.  High-Resolution Structure of ClpC1-Rufomycin and Ligand Binding Studies Provide a Framework to Design and Optimize Anti-Tuberculosis Leads. , 2019, ACS infectious diseases.

[11]  K. Turgay,et al.  Xenogeneic modulation of the ClpCP protease of Bacillus subtilis by a phage-encoded adaptor-like protein , 2019, The Journal of Biological Chemistry.

[12]  Wei-Lin Gao,et al.  Rufomycin Targets ClpC1 Proteolysis in Mycobacterium tuberculosis and M. abscessus , 2019, Antimicrobial Agents and Chemotherapy.

[13]  T. Clark,et al.  Understanding molecular consequences of putative drug resistant mutations in Mycobacterium tuberculosis , 2018, Scientific Reports.

[14]  Reidar Andreson,et al.  Primer3_masker: integrating masking of template sequence with primer design software , 2018, Bioinform..

[15]  Julien Vaubourgeix,et al.  Targeting the Proteostasis Network for Mycobacterial Drug Discovery , 2018, ACS infectious diseases.

[16]  K. Węgrzyn,et al.  Handcuffing reversal is facilitated by proteases and replication initiator monomers , 2017, Nucleic acids research.

[17]  K. Mechtler,et al.  Arginine phosphorylation marks proteins for degradation by a Clp protease , 2016, Nature.

[18]  M. Hibberd,et al.  Transcriptional Profiling of Mycobacterium tuberculosis Exposed to In Vitro Lysosomal Stress , 2016, Infection and Immunity.

[19]  K. Lewis,et al.  High Persister Mutants in Mycobacterium tuberculosis , 2016, PloS one.

[20]  Itay Mayrose,et al.  ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules , 2016, Nucleic Acids Res..

[21]  M. Schirle,et al.  Gift from Nature: Cyclomarin A Kills Mycobacteria and Malaria Parasites by Distinct Modes of Action , 2015, Chembiochem : a European journal of chemical biology.

[22]  Robert H. Vass,et al.  A Phosphosignaling Adaptor Primes the AAA+ Protease ClpXP to Drive Cell Cycle-Regulated Proteolysis. , 2015, Molecular cell.

[23]  Eilika Weber-Ban,et al.  The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1 , 2015, PloS one.

[24]  Suhair Sunoqrot,et al.  The Cyclic Peptide Ecumicin Targeting ClpC1 Is Active against Mycobacterium tuberculosis In Vivo , 2014, Antimicrobial Agents and Chemotherapy.

[25]  S. Waddell,et al.  Potassium availability triggers Mycobacterium tuberculosis transition to, and resuscitation from, non-culturable (dormant) states , 2014, Open Biology.

[26]  Alfred Goldberg,et al.  Lassomycin, a ribosomally synthesized cyclic peptide, kills mycobacterium tuberculosis by targeting the ATP-dependent protease ClpC1P1P2. , 2014, Chemistry & biology.

[27]  D. Brodersen,et al.  VapC20 of Mycobacterium tuberculosis cleaves the Sarcin–Ricin loop of 23S rRNA , 2013, Nature Communications.

[28]  Srinivasa P. S. Rao,et al.  Structural Basis of Mycobacterial Inhibition by Cyclomarin A , 2013, The Journal of Biological Chemistry.

[29]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[30]  Itay Mayrose,et al.  ConSurf: Using Evolutionary Data to Raise Testable Hypotheses about Protein Function , 2013 .

[31]  A. Goldberg,et al.  The active ClpP protease from M. tuberculosis is a complex composed of a heptameric ClpP1 and a ClpP2 ring , 2012, The EMBO journal.

[32]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[33]  A. Goldberg,et al.  Mycobacterium tuberculosis ClpP1 and ClpP2 Function Together in Protein Degradation and Are Required for Viability in vitro and During Infection , 2012, PLoS pathogens.

[34]  Slawomir Kubik,et al.  Opposing effects of DNA on proteolysis of a replication initiator , 2011, Nucleic acids research.

[35]  B. Raynal,et al.  Assembly and proteolytic processing of mycobacterial ClpP1 and ClpP2 , 2011, BMC Biochemistry.

[36]  Thomas R. Ioerger,et al.  High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism , 2011, PLoS pathogens.

[37]  T. Baker,et al.  The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease. , 2011, Molecular cell.

[38]  P. Niyomrattanakit,et al.  The natural product cyclomarin kills Mycobacterium tuberculosis by targeting the ClpC1 subunit of the caseinolytic protease. , 2011, Angewandte Chemie.

[39]  E. Rubin,et al.  Characterization and Transcriptome Analysis of Mycobacterium tuberculosis Persisters , 2011, mBio.

[40]  Tal Pupko,et al.  ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids , 2010, Nucleic Acids Res..

[41]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[42]  Wolfgang Kabsch,et al.  Integration, scaling, space-group assignment and post-refinement , 2010, Acta crystallographica. Section D, Biological crystallography.

[43]  Zeljka Maglica,et al.  Clp chaperone-proteases: structure and function. , 2009, Research in microbiology.

[44]  G. Sheldrick,et al.  Crystallographic ab initio protein structure solution below atomic resolution , 2009, Nature Methods.

[45]  H. Mollenkopf,et al.  M. tuberculosis Gene Expression during Transition to the "Non-Culturable" State , 2009, Acta naturae.

[46]  F. Striebel,et al.  Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes. , 2009, Current opinion in structural biology.

[47]  Deepa Sikriwal,et al.  Mycobacterium tuberculosis ClpC1 , 2008, The FEBS journal.

[48]  Randy J. Read,et al.  Dauter Iterative model building , structure refinement and density modification with the PHENIX AutoBuild wizard , 2007 .

[49]  Deepa Sikriwal,et al.  Characterization and role of the N-terminal domain in its function , 2008 .

[50]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[51]  W. Houry,et al.  ClpP: A distinctive family of cylindrical energy‐dependent serine proteases , 2007, FEBS letters.

[52]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[53]  S. Lawn,et al.  Extensively drug resistant tuberculosis , 2006, BMJ : British Medical Journal.

[54]  Janine Kirstein,et al.  Adaptor protein controlled oligomerization activates the AAA+ protein ClpC , 2006, The EMBO journal.

[55]  B. Bukau,et al.  Targeted delivery of an ssrA-tagged substrate by the adaptor protein SspB to its cognate AAA+ protein ClpX. , 2003, Molecular cell.

[56]  A. Horwich,et al.  ClpS, a substrate modulator of the ClpAP machine. , 2002, Molecular cell.

[57]  J. Betts,et al.  Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling , 2002, Molecular microbiology.

[58]  William Fenical,et al.  Cyclomarins A—C, New Antiinflammatory Cyclic Peptides Produced by a Marine Bacterium (Streptomyces sp.). , 2000 .

[59]  William Fenical,et al.  Cyclomarins A−C, New Antiinflammatory Cyclic Peptides Produced by a Marine Bacterium (Streptomyces sp.) , 1999 .

[60]  A. Horwich,et al.  Chaperone rings in protein folding and degradation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[61]  A. Horwich,et al.  Global unfolding of a substrate protein by the Hsp100 chaperone ClpA , 1999, Nature.

[62]  C. Larsen,et al.  Protein Translocation Channels in the Proteasome and Other Proteases , 1997, Cell.

[63]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.