Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk

Known genetic loci explain only a small proportion of the familial relative risk of colorectal cancer (CRC). We conducted a genome-wide association study of CRC in East Asians with 14,963 cases and 31,945 controls and identified 6 new loci associated with CRC risk (P = 3.42 × 10−8 to 9.22 × 10−21) at 10q22.3, 10q25.2, 11q12.2, 12p13.31, 17p13.3 and 19q13.2. Two of these loci map to genes (TCF7L2 and TGFB1) with established roles in colorectal tumorigenesis. Four other loci are located in or near genes involved in transcriptional regulation (ZMIZ1), genome maintenance (FEN1), fatty acid metabolism (FADS1 and FADS2), cancer cell motility and metastasis (CD9), and cell growth and differentiation (NXN). We also found suggestive evidence for three additional loci associated with CRC risk near genome-wide significance at 8q24.11, 10q21.1 and 10q24.2. Furthermore, we replicated 22 previously reported CRC-associated loci. Our study provides insights into the genetic basis of CRC and suggests the involvement of new biological pathways.

Yan Guo | Ben Zhang | Min-Ho Shin | Gong Yang | Keitaro Matsuo | Stephen B Gruber | Sun Ha Jee | Jirong Long | Jenny Chang-Claude | Michiaki Kubo | Koichi Matsuda | Jae Hwan Oh | Jin-Young Jeong | Bingshan Li | Graham Casey | Atsushi Takahashi | Fumihiko Matsuda | Sang-Hee Cho | Andrew T Chan | Martha L Slattery | Wanqing Wen | Wei Zheng | C. Carlson | J. Chang-Claude | M. Hoffmeister | R. Hayes | S. Chanock | J. Potter | D. Seminara | S. Gruber | D. Duggan | K. Matsuda | G. Severi | S. Thibodeau | D. Conti | L. Le Marchand | F. Schumacher | E. Giovannucci | J. Long | W. Jia | X. Shu | Yu-tang Gao | Y. Xiang | W. Zheng | S. Berndt | G. Casey | J. Baron | M. Kubo | J. Park | J. Oh | S. Gallinger | K. Matsuo | Q. Cai | P. Newcomb | U. Peters | A. Chan | C. Fuchs | M. Jenkins | T. Rohan | D. Thomas | C. Hutter | W. Wen | W. Gauderman | S. Jee | L. Hsu | E. Jacobs | B. Zanke | E. White | A. Takahashi | F. Matsuda | R. Schoen | Bingshan Li | M. Slattery | Jian Gong | S. Küry | Gong Yang | M. Lemire | N. Lindor | Chun Li | Y. Zeng | Z. Pan | B. Ji | R. Haile | Soriul Kim | J. Figueiredo | M. Shin | B. Mukherjee | Yan Guo | A. Shin | S. Kweon | Hong-Lan Li | C. Edlund | Yi Lin | Jing Ma | B. Caan | T. Harrison | Sang-Hee Cho | Shuo Jiao | Dong-Hyun Kim | S. Bézieau | P. Campbell | Keith Curtis | Ben Zhang | Yanfeng Zhang | Jiajun Shi | R. Green | L. Raskin | S. Hosono | H. Kim | Li Li | Xiao-Ou Shu | Yu-Tang Gao | Fredrick R Schumacher | Yanfeng Zhang | Sun-Seog Kweon | Qiuyin Cai | Yong-Bing Xiang | Yoon-Ok Ahn | Dong-Hyun Kim | Yi-Xin Zeng | Satoyo Hosono | Wei-Hua Jia | Bu-Tian Ji | Z. Ren | Y. Ahn | Zhi-Zhong Pan | Aesun Shin | Zefang Ren | Jiajun Shi | Ji Won Park | F. Manion | Duncan C. Thomas | Stephanie L. Stenzel | Jin-Young Jeong | Chun Li | Soriul Kim | Stephanie L Stenzel | Hyeong-Rok Kim | Hong-Lan Li | H. Brenner | T. Hudson | J. Hopper | A. Chan | J. Gong | Sang‐Hee Cho | Yu-Tang Gao | D. J. Hunter | V. Moreno | John Harju | C. Qu | Rebecca D. Jackson | John A Sonja I Stéphane Hermann Bette J Christopher S G Baron Berndt Bezieau Brenner Caan Carlson Ca | Kendra Peter T Graham David V Christopher K Jane W James Blalock Campbell Casey Conti Edlund Figuei | K. Blalock | Stephanie L Stenzel | Chang-Claude Jenny | M. Kubo | M. Jenkins | Yu-Tang Gao | Yu-Tang Gao | Andrew T. Chan | Andrew T Chan | Jenny Chang-Claude | M L Slattery | Stephen B Gruber | Graham Casey | L. Hsu | J. Chang-Claude | A. T. Chan | S. Gruber | Andrew T. Chan

[1]  Makoto Asashima,et al.  The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt–β-catenin signalling through Dishevelled , 2006, Nature Cell Biology.

[2]  Steven Gallinger,et al.  Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk , 2012, Nature Genetics.

[3]  G. Abecasis,et al.  MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes , 2010, Genetic epidemiology.

[4]  Y. Joo,et al.  Glycoprotein 90K, downregulated in advanced colorectal cancer tissues, interacts with CD9/CD82 and suppresses the Wnt/β-catenin signal via ISGylation of β-catenin , 2010, Gut.

[5]  M. Suthanthiran,et al.  Transforming growth factor-beta 1 hyperexpression in African-American hypertensives: A novel mediator of hypertension and/or target organ damage. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Jaana M. Hartikainen,et al.  Large-scale genotyping identifies 41 new loci associated with breast cancer risk , 2013, Nature Genetics.

[7]  Ben Zhang,et al.  Genome-wide association analyses in East Asians identify new susceptibility loci for colorectal cancer , 2012, Nature Genetics.

[8]  Steven Gallinger,et al.  Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24 , 2007, Nature Genetics.

[9]  K. Ikeda,et al.  Association of a Polymorphism of the Transforming Growth Factor‐β1 Gene with Genetic Susceptibility to Osteoporosis in Postmenopausal Japanese Women , 1998, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[10]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[11]  Peter Donnelly,et al.  Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas , 2013, Nature Genetics.

[12]  Makhlouf Obermeyer Department of Epidemiology and Population Health , 2013 .

[13]  Jack A. Taylor,et al.  SNPinfo: integrating GWAS and candidate gene information into functional SNP selection for genetic association studies , 2009, Nucleic Acids Res..

[14]  Steven Gallinger,et al.  Multiple Common Susceptibility Variants near BMP Pathway Loci GREM1, BMP4, and BMP2 Explain Part of the Missing Heritability of Colorectal Cancer , 2011, PLoS genetics.

[15]  Wei Zheng,et al.  Genetic variants associated with breast-cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence. , 2011, The Lancet. Oncology.

[16]  Aedín C. Culhane,et al.  Gene Expression Atlas update—a value-added database of microarray and sequencing-based functional genomics experiments , 2011, Nucleic Acids Res..

[17]  Kristian Cibulskis,et al.  Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion , 2011, Nature Genetics.

[18]  D. Kerr,et al.  Common genetic variants at the CRAC1 (HMPS) locus on chromosome 15q13.3 influence colorectal cancer risk , 2008, Nature Genetics.

[19]  L. Lum,et al.  A genome-wide RNAi screen for Wnt/β-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer , 2008, Proceedings of the National Academy of Sciences.

[20]  W. Han,et al.  Common genetic determinants of breast-cancer risk in East Asian women: a collaborative study of 23 637 breast cancer cases and 25 579 controls. , 2013, Human molecular genetics.

[21]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[22]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[23]  Xianrang Song,et al.  Functional FEN1 genetic variants contribute to risk of hepatocellular carcinoma, esophageal cancer, gastric cancer and colorectal cancer. , 2012, Carcinogenesis.

[24]  M. Bertagnolli,et al.  Molecular origins of cancer: Molecular basis of colorectal cancer. , 2009, The New England journal of medicine.

[25]  T. Spector,et al.  Genetic control of the circulating concentration of transforming growth factor type beta1. , 1999, Human molecular genetics.

[26]  E. Liu,et al.  A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci , 2010, Nature Genetics.

[27]  D. Lin,et al.  Fen1 mutations result in autoimmunity, chronic inflammation and cancers , 2007, Nature Medicine.

[28]  K. Matsuo,et al.  Association between the SERPING1 Gene and Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy in Japanese , 2011, PloS one.

[29]  J. Chang-Claude,et al.  A Transforming Growth Factorβ1 Signal Peptide Variant Increases Secretion in Vitro and Is Associated with Increased Incidence of Invasive Breast Cancer , 2003 .

[30]  Julian Peto,et al.  A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3 , 2008, Nature Genetics.

[31]  J. Turnay,et al.  The tetraspanin CD9 inhibits the proliferation and tumorigenicity of human colon carcinoma cells , 2007, International journal of cancer.

[32]  Andrew D. Johnson,et al.  SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap , 2008, Bioinform..

[33]  M. Heikenwalder,et al.  The unexpected role of lymphotoxin β receptor signaling in carcinogenesis: from lymphoid tissue formation to liver and prostate cancer development , 2010, Oncogene.

[34]  J. Marchini,et al.  Fast and accurate genotype imputation in genome-wide association studies through pre-phasing , 2012, Nature Genetics.

[35]  K. Mimori,et al.  Motility related protein 1 (MRP1/CD9) expression in colon cancer. , 1998, Clinical cancer research : an official journal of the American Association for Cancer Research.

[36]  지선하 Identification of genetic susceptibility loci for colorectal tumors in a genome-wide meta-analysis , 2013 .

[37]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[38]  Mark Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[39]  T. Beaty,et al.  Adiponectin concentrations: a genome-wide association study. , 2010, American journal of human genetics.

[40]  L. Palmer,et al.  Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. , 2006, Human molecular genetics.

[41]  Mathieu Lemire,et al.  Genotype–Environment Interactions in Microsatellite Stable/Microsatellite Instability-Low Colorectal Cancer: Results from a Genome-Wide Association Study , 2011, Cancer Epidemiology, Biomarkers & Prevention.

[42]  W. Zheng,et al.  Genetic variants associated with colorectal cancer risk: comprehensive research synopsis, meta-analysis, and epidemiological evidence , 2013, Gut.

[43]  Y. Funato,et al.  Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiation. , 2007, Antioxidants & redox signaling.

[44]  Zhaohui S. Qin,et al.  A second generation human haplotype map of over 3.1 million SNPs , 2007, Nature.

[45]  A. Lukashin,et al.  Targeting the lymphotoxin-beta receptor with agonist antibodies as a potential cancer therapy. , 2006, Cancer research.

[46]  N. Rothman,et al.  Prospective study of urinary prostaglandin E2 metabolite and colorectal cancer risk. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[47]  K. Druey,et al.  Prostaglandin E2 Promotes Colon Cancer Cell Growth Through a Gs-Axin-ß-Catenin Signaling Axis , 2005, Science.

[48]  G. Thomas,et al.  [Genetic predisposition to colorectal cancer]. , 1993, Annales de gastroenterologie et d'hepatologie.

[49]  J. Ioannidis,et al.  Quantitative Synthesis in Systematic Reviews , 1997, Annals of Internal Medicine.

[50]  Deborah Hughes,et al.  Genome-wide association study identifies five new breast cancer susceptibility loci , 2010, Nature Genetics.

[51]  R. Kucherlapati,et al.  Haploinsufficiency of Flap endonuclease (Fen1) leads to rapid tumor progression , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[53]  Joseph K. Pickrell,et al.  DNaseI sensitivity QTLs are a major determinant of human expression variation , 2011, Nature.

[54]  M. Capecchi,et al.  T-cell factor 4 functions as a tumor suppressor whose disruption modulates colon cell proliferation and tumorigenesis , 2011, Proceedings of the National Academy of Sciences.

[55]  Mingming Jia,et al.  COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer , 2010, Nucleic Acids Res..

[56]  V. Sharma,et al.  Transforming growth factor-β1 hyperexpression in African-American hypertensives: A novel mediator of hypertension and/or target organ damage , 2000 .

[57]  Peter Kraft,et al.  Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array , 2013, Nature Genetics.

[58]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[59]  Yusuke Nakamura,et al.  Genome‐wide association study identifies a new SMAD7 risk variant associated with colorectal cancer risk in East Asians , 2014, International journal of cancer.

[60]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[61]  J. Haines,et al.  Genome-wide association study identifies a novel breast cancer susceptibility locus at 6q25.1 , 2009, Nature Genetics.

[62]  Jukka-Pekka Mecklin,et al.  Explaining the Familial Colorectal Cancer Risk Associated with Mismatch Repair (MMR)-Deficient and MMR-Stable Tumors , 2007, Clinical Cancer Research.

[63]  Geoffrey S. Tobias,et al.  Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer , 2009, Nature Genetics.

[64]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[65]  L. Aaltonen,et al.  Mutations in the SMAD4/DPC4 gene in juvenile polyposis. , 1998, Science.

[66]  Jean-Baptiste Cazier,et al.  Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33 , 2010, Nature Genetics.

[67]  J. Kaprio,et al.  Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. , 2000, The New England journal of medicine.

[68]  S. Gabriel,et al.  Assessing the impact of population stratification on genetic association studies , 2004, Nature Genetics.

[69]  Oliver Sieber,et al.  A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk , 2007, Nature Genetics.

[70]  I. Deary,et al.  Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21 , 2008, Nature Genetics.

[71]  Steven J. M. Jones,et al.  Comprehensive molecular characterization of human colon and rectal cancer , 2012, Nature.

[72]  David K. Meyerholz,et al.  Ectopic expression of Zmiz1 induces cutaneous squamous cell malignancies in a mouse model of cancer , 2013, The Journal of investigative dermatology.

[73]  L. Zender,et al.  T-helper-1-cell cytokines drive cancer into senescence , 2013, Nature.

[74]  N. Hu,et al.  A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma , 2010, Nature Genetics.

[75]  Manolis Kellis,et al.  HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants , 2011, Nucleic Acids Res..

[76]  Simon G. Coetzee,et al.  Identification of Genetic Susceptibility Loci for Colorectal Tumors in a Genome-Wide Meta-analysis. , 2013, Gastroenterology.

[77]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[78]  R. Houlston,et al.  A systematic review and meta-analysis of familial colorectal cancer risk , 2001, American Journal of Gastroenterology.

[79]  Oliver Sieber,et al.  A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21 , 2007, Nature Genetics.

[80]  Michael Boehnke,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[81]  J. Chang-Claude,et al.  A transforming growth factorbeta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. , 2003, Cancer research.

[82]  M. Peters,et al.  Systematic identification of trans eQTLs as putative drivers of known disease associations , 2013, Nature Genetics.

[83]  Jian Wang,et al.  Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques , 2011, Nature Biotechnology.

[84]  A. Jemal,et al.  Global cancer statistics , 2011, CA: a cancer journal for clinicians.

[85]  S. Liyanarachchi,et al.  Germline Allele-Specific Expression of TGFBR1 Confers an Increased Risk of Colorectal Cancer , 2008, Science.

[86]  Steven Gallinger,et al.  Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer , 2008, Nature Genetics.

[87]  Simon C. Potter,et al.  Mapping cis- and trans-regulatory effects across multiple tissues in twins , 2012, Nature Genetics.

[88]  L. Finger,et al.  Functional regulation of FEN1 nuclease and its link to cancer , 2010, Nucleic acids research.