暂无分享,去创建一个
[1] M. W. Johnson,et al. Phase transitions in a programmable quantum spin glass simulator , 2018, Science.
[2] Velimir V. Vesselinov,et al. Nonnegative/Binary matrix factorization with a D-Wave quantum annealer , 2017, PloS one.
[3] Nicholas Chancellor,et al. Modernizing quantum annealing using local searches , 2016, 1606.06833.
[4] Peter W. Shor,et al. Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[5] J. Houdayer,et al. A cluster Monte Carlo algorithm for 2-dimensional spin glasses , 2001 .
[6] John E. Dorband,et al. A Method of Finding a Lower Energy Solution to a QUBO/Ising Objective Function , 2018, ArXiv.
[7] Bikas K. Chakrabarti,et al. Quantum Spin Glasses, Annealing and Computation , 2017 .
[8] van Aernout Enter. Statistical Mechanics, A Short Treatise , 2000 .
[9] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[10] Óscar Promio Muñoz. Quantum Annealing in the transverse Ising Model , 2018 .
[11] Ken-ichi Kawarabayashi,et al. A coherent Ising machine for 2000-node optimization problems , 2016, Science.
[12] Roger Melko,et al. Quantum Boltzmann Machine , 2016, 1601.02036.
[13] Steffen L. Lauritzen,et al. Bayesian updating in causal probabilistic networks by local computations , 1990 .
[14] Toshiyuki Miyazawa,et al. Physics-Inspired Optimization for Quadratic Unconstrained Problems Using a Digital Annealer , 2018, Front. Phys..
[15] Lov K. Grover. Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.
[16] H. Markowitz. The Elimination form of the Inverse and its Application to Linear Programming , 1957 .
[17] Gili Rosenberg,et al. Boosting quantum annealer performance via sample persistence , 2016, Quantum Inf. Process..
[18] John Preskill,et al. Quantum Computing in the NISQ era and beyond , 2018, Quantum.
[19] G. W. Greenwood,et al. Finding solutions to NP problems: philosophical differences between quantum and evolutionary search algorithms , 2000, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).
[20] Firas Hamze,et al. Erratum: Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines (Phys. Rev. X 4, 021008 (2014)) , 2015 .
[21] A. Harrow,et al. Quantum Supremacy through the Quantum Approximate Optimization Algorithm , 2016, 1602.07674.
[22] John Preskill,et al. Quantum computing and the entanglement frontier , 2012, 1203.5813.
[23] Alán Aspuru-Guzik,et al. A study of heuristic guesses for adiabatic quantum computation , 2008, Quantum Inf. Process..
[24] Daniel A. Lidar,et al. Dynamics of reverse annealing for the fully connected p -spin model , 2018, Physical Review A.
[25] Steven H. Adachi,et al. Application of Quantum Annealing to Training of Deep Neural Networks , 2015, ArXiv.
[26] E. Farhi,et al. A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.
[27] Alán Aspuru-Guzik,et al. A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.
[28] Helmut G. Katzgraber,et al. Effective optimization using sample persistence: A case study on quantum annealers and various Monte Carlo optimization methods , 2017, Physical review. E.
[29] Andrew J. Ochoa,et al. Feeding the multitude: A polynomial-time algorithm to improve sampling. , 2018, Physical review. E.
[30] David Von Dollen,et al. Traffic Flow Optimization Using a Quantum Annealer , 2017, Front. ICT.
[31] Toshiyuki Miyazawa,et al. Physics-inspired optimization for constraint-satisfaction problems using a digital annealer , 2018, ArXiv.
[32] Firas Hamze,et al. Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines , 2014, 1401.1546.
[33] M. Sipser,et al. Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.
[34] John E. Dorband. Stochastic Characteristics of Qubits and Qubit chains on the D-Wave 2X , 2016, ArXiv.
[35] John E. Dorband,et al. Extending the D-Wave with support for Higher Precision Coefficients , 2018, ArXiv.
[36] Daniel O'Malley. An approach to quantum-computational hydrologic inverse analysis , 2018, Scientific Reports.