A test of the isochron burial dating method on fluvial gravels within the Pulu volcanic sequence, West Kunlun Mountains, China

[1]  B. Borchers,et al.  Cosmogenic nuclide systematics and the CRONUScalc program , 2016 .

[2]  B. Borchers,et al.  Geological calibration of spallation production rates in the CRONUS-Earth project , 2016 .

[3]  M. Caffee,et al.  New cosmogenic burial ages for Sterkfontein Member 2 Australopithecus and Member 5 Oldowan , 2015, Nature.

[4]  R. Reedy,et al.  Physics-based modeling of cosmogenic nuclides part I – Radiation transport methods and new insights , 2015 .

[5]  K. Nishiizumi,et al.  In situ cosmogenic nuclide production rate calibration for the CRONUS-Earth project from lake Bonneville, Utah, shoreline features , 2015 .

[6]  C. K. Brain,et al.  Cosmogenic nuclide burial dating of hominin-bearing Pleistocene cave deposits at Swartkrans, South Africa , 2014 .

[7]  Tatsuhiko Sato,et al.  Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes , 2014 .

[8]  G. Soreghan,et al.  Cosmogenic-nuclide burial ages for Pleistocene sedimentary fill in Unaweep Canyon, Colorado, USA , 2013 .

[9]  D. Granger,et al.  Rock uplift rates in South Africa from isochron burial dating of fluvial and marine terraces , 2012 .

[10]  M. Chazan,et al.  Reconstructing the history of sediment deposition in caves: A case study from Wonderwerk Cave, South Africa , 2012 .

[11]  E. Kirby,et al.  Cosmogenic burial ages reveal sediment reservoir dynamics along the Yellow River, China , 2011 .

[12]  P. Kubik,et al.  Recycling of Amazon floodplain sediment quantified by cosmogenic 26Al and 10Be , 2011 .

[13]  E. Kirby,et al.  New incision rates along the Colorado River system based on cosmogenic burial dating of terraces: Implications for regional controls on Quaternary incision , 2012 .

[14]  G. Balco,et al.  Absolute chronology for major Pleistocene advances of the Laurentide Ice Sheet , 2010 .

[15]  F. Blanckenburg,et al.  Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting , 2010 .

[16]  G. Dollinger,et al.  A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting , 2010 .

[17]  G. Balco,et al.  An isochron method for cosmogenic-nuclide dating of buried soils and sediments , 2008, American Journal of Science.

[18]  J. Wang,et al.  Post-collisional Plio-Pleistocene shoshonitic volcanism in the western Kunlun Mountains, NW China: Geochemical constraints on mantle source characteristics and petrogenesis , 2008 .

[19]  J. Southon,et al.  Absolute calibration of 10Be AMS standards , 2007 .

[20]  R. Anderson,et al.  Comparison of U–Th, paleomagnetism, and cosmogenic burial methods for dating caves: Implications for landscape evolution studies , 2005 .

[21]  K. Nishiizumi Preparation of 26Al AMS standards , 2004 .

[22]  Margarita López Martínez,et al.  Unified equations for the slope, intercept, and standard errors of the best straight line , 2004 .

[23]  Jinglin Wan,et al.  Late Cenozoic geological evolution of the foreland basin bordering the West Kunlun range in Pulu area: Constraints on timing of uplift of northern margin of the Tibetan Plateau , 2003 .

[24]  D. Granger,et al.  Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations , 2001 .

[25]  Jie Zhou,et al.  Pliocene uplift of the northern Tibetan Plateau , 2000 .

[26]  B. Fu,et al.  Paleomagnetic study on volcanic rocks in Pulu, Xinjiang , 1997 .

[27]  P. Kubik,et al.  Quaternary uplift rates of the Central Anatolian Plateau, Turkey: Insights from cosmogenic isochron-burial nuclide dating of the Kizilirmak River terraces , 2015 .

[28]  D. Granger Cosmogenic Nuclide Burial Dating in Archaeology and Paleoanthropology , 2014 .

[29]  D. Bourlès,et al.  Determination of muon attenuation lengths in depth profiles from in situ produced cosmogenic nuclides , 2013 .