The effect of V/III ratio and catalyst particle size on the crystal structure and optical properties of InP nanowires

InP nanowires were grown on 111B InP substrates by metal-organic chemical vapour deposition in the presence of colloidal gold particles as catalysts. Transmission electron microscopy and photoluminescence measurements were carried out to investigate the effects of V/III ratio and nanowire diameter on structural and optical properties. Results show that InP nanowires grow preferably in the wurtzite crystal structure than the zinc blende crystal structure with increasing V/III ratio or decreasing diameter. Additionally, time-resolved photoluminescence (TRPL) studies have revealed that wurtzite nanowires show longer recombination lifetimes of approximately 2500 ps with notably higher quantum efficiencies.

[1]  Chennupati Jagadish,et al.  Carrier dynamics and quantum confinement in type II ZB-WZ InP nanowire homostructures. , 2009, Nano letters.

[2]  Sagi Mathai,et al.  A 14-ps full width at half maximum high-speed photoconductor fabricated with intersecting InP nanowires on an amorphous surface , 2008 .

[3]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[4]  Lars Samuelson,et al.  Single-electron transistors in heterostructure nanowires. , 2003 .

[5]  O. M. Gorbenko,et al.  Atomic structure of MBE-grown GaAs nanowhiskers , 2005 .

[6]  G. B. Stringfellow,et al.  A mass spectrometric study of the simultaneous reaction mechanism of TMIn and PH3 to grow InP , 1988 .

[7]  Lars Samuelson,et al.  Growth of one-dimensional nanostructures in MOVPE , 2004 .

[8]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[9]  R. LaPierre,et al.  Onset of stacking faults in InP nanowires grown by gas source molecular beam epitaxy , 2007 .

[10]  K. Dick,et al.  Controlled polytypic and twin-plane superlattices in iii-v nanowires. , 2009, Nature nanotechnology.

[11]  Gilles Patriarche,et al.  Why does wurtzite form in nanowires of III-V zinc blende semiconductors? , 2007, Physical review letters.

[12]  Lars Samuelson,et al.  Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires , 2007 .

[13]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[14]  H. Jackson,et al.  Dynamics of strongly degenerate electron-hole plasmas and excitons in single InP nanowires. , 2007, Nano letters.

[15]  V. Dubrovskii,et al.  Growth kinetics and crystal structure of semiconductor nanowires , 2008 .

[16]  Adalberto Fazzio,et al.  EL2-like defects in InP nanowires: An ab initio total energy investigation , 2007 .

[17]  Chen,et al.  Phosphorus antisite defects in low-temperature InP. , 1993, Physical review. B, Condensed matter.

[18]  Shadi A Dayeh,et al.  III-V nanowire growth mechanism: V/III ratio and temperature effects. , 2007, Nano letters.

[19]  H. Lipsanen,et al.  Crystal-structure-dependent photoluminescence from InP nanowires , 2006, Nanotechnology.

[20]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[21]  Federico Capasso,et al.  Optical properties of rotationally twinned InP nanowire heterostructures. , 2008, Nano letters.

[22]  K. Dick,et al.  Directed Growth of Branched Nanowire Structures , 2007 .

[23]  Chennupati Jagadish,et al.  Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. , 2007, Nano letters.

[24]  Christensen,et al.  Bonding and ionicity in semiconductors. , 1987, Physical review. B, Condensed matter.

[25]  Elias Vlieg,et al.  Twinning superlattices in indium phosphide nanowires , 2008, Nature.

[26]  Lyubov V. Titova,et al.  Polarization and temperature dependence of photoluminescence from zincblende and wurtzite InP nanowires , 2007 .

[27]  Ray R. LaPierre,et al.  Growth mechanisms of GaAs nanowires by gas source molecular beam epitaxy , 2006 .

[28]  Kh. B. Khokonov,et al.  Surface tension of the indium-lead system in the liquid and solid states , 2007 .

[29]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[30]  Takashi Fukui,et al.  Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays , 2005 .

[31]  T. Ito,et al.  An Empirical Potential Approach to Wurtzite–Zinc-Blende Polytypism in Group III–V Semiconductor Nanowires , 2006 .

[32]  Lars Samuelson,et al.  Growth mechanisms for GaAs nanowires grown in CBE , 2004 .

[33]  Nieminen,et al.  Indium and phosphorus vacancies and antisites in InP. , 1994, Physical review. B, Condensed matter.

[34]  E. Bakkers,et al.  Three-dimensional morphology of GaP-GaAs nanowires revealed by transmission electron microscopy tomography. , 2007, Nano letters.

[35]  J. C. Phillips Ionicity of the Chemical Bond in Crystals , 1970 .

[36]  Hiroshi Nakashima,et al.  Vapor–liquid–solid growth of vertically aligned InP nanowires by metalorganic vapor phase epitaxy , 2004 .

[37]  L. Samuelson,et al.  Structural properties of 〈111〉B -oriented III–V nanowires , 2006, Nature materials.

[38]  David N. McIlroy,et al.  Nanospring formation—unexpected catalyst mediated growth , 2004 .

[39]  Chennupati Jagadish,et al.  High Purity GaAs Nanowires Free of Planar Defects: Growth and Characterization , 2008 .

[40]  Scott A. Norris,et al.  Steady growth of nanowires via the vapor-liquid-solid method , 2007 .

[41]  T. Duty,et al.  A radio frequency single-electron transistor based on an InAs/InP heterostructure nanowire. , 2008, Nano letters.

[42]  P. Couturier Japan , 1988, The Lancet.