Gilbert-Varshamov bound for Euclidean space codes over distance-uniform signal sets

In this correspondence, in an extension of Piret's bound for codes over phase-shift keying (PSK) signal sets, we investigate the application of the Gilbert-Varshamov (GV) bound to a variety of distance-uniform (DU) signal sets in Euclidean space. It is shown that four-dimensional signal sets matched to binary tetrahedral, binary octahedral, and binary icosahedral groups lead to better bounds compared to the bounds for signal sets matched to dicyclic groups with the same number of signal points and comparable symmetric PSK signal sets.

[1]  Richard E. Blahut,et al.  Principles and practice of information theory , 1987 .

[2]  Hans-Andrea Loeliger An upper bound on the volume of discrete spheres , 1994, IEEE Trans. Inf. Theory.

[3]  Hideki Imai,et al.  A new multilevel coding method using error-correcting codes , 1977, IEEE Trans. Inf. Theory.

[4]  Dariush Divsalar,et al.  Introduction to Trellis-Coded Modulation With Applications , 1991 .

[5]  Theodore G. Birdsall,et al.  Quadrature-quadrature phase-shift keying , 1989, IEEE Trans. Commun..

[6]  Ezio Biglieri,et al.  Four-dimensional signaling for bandlimited channels , 1994, IEEE Trans. Commun..

[7]  David S. Slepian On neighbor distances and symmetry in group codes (Corresp.) , 1971, IEEE Trans. Inf. Theory.

[8]  B.S. Rajan,et al.  Block coded modulation using two-level group codes over generalized quaternion groups , 1997, Proceedings of IEEE International Symposium on Information Theory.

[9]  Jacobus H. van Lint,et al.  Introduction to Coding Theory , 1982 .

[10]  Hans-Andrea Loeliger,et al.  Signal sets matched to groups , 1991, IEEE Trans. Inf. Theory.

[11]  H. Niederreiter,et al.  Low-Discrepancy Sequences and Global Function Fields with Many Rational Places , 1996 .

[12]  Jhong S. Lee,et al.  Digital transmission with coherent four-dimensional modulation , 1974, IEEE Trans. Inf. Theory.

[13]  Allen Gersho,et al.  Multidimensional Signal Constellations for Voiceband Data Transmission , 1984, IEEE J. Sel. Areas Commun..

[14]  Hans-Andrea Loeliger,et al.  On Euclidean-space group codes , 1992 .

[15]  Henning Stichtenoth,et al.  A characterization of Hermitian function fields over finite fields. , 1994 .

[16]  Hans-Andrea Loeliger,et al.  Averaging bounds for lattices and linear codes , 1997, IEEE Trans. Inf. Theory.

[17]  Roberto Garello,et al.  Multilevel construction of block and trellis group codes , 1995, IEEE Trans. Inf. Theory.

[18]  B. Sundar Rajan,et al.  Block-Coded PSK Modulation Using Two-Level Group Codes Over Dihedral Groups , 1998, IEEE Trans. Inf. Theory.

[19]  Philippe Piret,et al.  Bounds for codes over the unit circle , 1986, IEEE Trans. Inf. Theory.

[20]  Frank R. Kschischang,et al.  Block coset codes for M-ary phase shift keying , 1989, IEEE J. Sel. Areas Commun..

[21]  Giuseppe Caire,et al.  Linear block codes over cyclic groups , 1995, IEEE Trans. Inf. Theory.

[22]  Shu Lin,et al.  On multilevel block modulation codes , 1991, IEEE Trans. Inf. Theory.

[23]  V. D. Goppa Codes on Algebraic Curves , 1981 .

[24]  G. David Forney,et al.  Geometrically uniform codes , 1991, IEEE Trans. Inf. Theory.

[25]  Lars H. Zetterberg,et al.  Codes for Combined Phase and Amplitude Modulated Signals in a Four-Dimensional Space , 1977, IEEE Trans. Commun..