Pricing High-Dimensional American Options Using Local Consistency Conditions

We investigate a new method for pricing high-dimensional American options. The method is of finite difference type but is also related to Monte Carlo techniques in that it involves a representative sampling of the underlying variables.An approximating Markov chain is built using this sampling and linear programming is used to satisfy local consistency conditions at each point related to the infinitesimal generator or transition density.The algorithm for constructing the matrix can be parallelised easily; moreover once it has been obtained it can be reused to generate quick solutions for a large class of related problems.We provide pricing results for geometric average options in up to ten dimensions, and compare these with accurate benchmarks.

[1]  Gillis Pagés,et al.  A space quantization method for numerical integration , 1998 .

[2]  Jérôme Barraquand,et al.  Numerical Valuation of High Dimensional Multivariate American Securities , 1995, Journal of Financial and Quantitative Analysis.

[3]  M. Dempster,et al.  Pricing American Stock Options by Linear Programming , 1996 .

[4]  Ken Seng Tan,et al.  An improved simulation method for pricing high-dimensional American derivatives , 2003, Math. Comput. Simul..

[5]  Francis A. Longstaff,et al.  Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .

[6]  David Lamper,et al.  Monte Carlo valuation of American Options , 2004 .

[7]  S. J. Berridge Irregular grid methods for pricing high-dimensional American options , 2004 .

[8]  Tim B. Swartz,et al.  Approximating Integrals Via Monte Carlo and Deterministic Methods , 2000 .

[9]  Dawn Hunter,et al.  A stochastic mesh method for pricing high-dimensional American options , 2004 .

[10]  P. Glasserman,et al.  A Sotchastic Mesh Method for Pricing High-Dimensional American Options , 2004 .

[11]  C. Cryer The Solution of a Quadratic Programming Problem Using Systematic Overrelaxation , 1971 .

[12]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[13]  Jérôme Detemple American-Style Derivatives : Valuation and Computation , 2005 .

[14]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[15]  George Tauchen,et al.  Finite state markov-chain approximations to univariate and vector autoregressions , 1986 .

[16]  D. Lamberton,et al.  Variational inequalities and the pricing of American options , 1990 .

[17]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[18]  Philip Protter,et al.  An analysis of a least squares regression method for American option pricing , 2002, Finance Stochastics.

[19]  Johannes Schumacher,et al.  An Irregular Grid Approach for Pricing High-Dimensional American Options , 2002 .

[20]  Martin B. Haugh,et al.  Pricing American Options: A Duality Approach , 2001, Oper. Res..

[21]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[22]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[23]  J. M. Schumacher,et al.  An irregular grid method for high-dimensional free-boundary problems in finance , 2004, Future Gener. Comput. Syst..

[24]  John N. Tsitsiklis,et al.  Regression methods for pricing complex American-style options , 2001, IEEE Trans. Neural Networks.

[25]  John Schoenmakers,et al.  Iterative construction of the optimal Bermudan stopping time , 2006, Finance Stochastics.

[26]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[27]  J. M. Schumacher,et al.  An Irregular Grid Method for Solving High-Dimensional Problems in Finance , 2002, International Conference on Computational Science.

[28]  J. Carriére Valuation of the early-exercise price for options using simulations and nonparametric regression , 1996 .

[29]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[30]  Lars Stentoft,et al.  Convergence of the Least Squares Monte Carlo Approach to American Option Valuation , 2004, Manag. Sci..

[31]  Paul Glasserman,et al.  Monte Carlo Methods in Financial Engineering , 2003 .

[32]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[33]  H. Kushner Numerical Methods for Stochastic Control Problems in Continuous Time , 2000 .

[34]  James A. Tilley Valuing American Options in a Path Simulation Model , 2002 .