Globally optimised parameters for a model of mitotic control in frog egg extracts.

DNA synthesis and nuclear division in the developing frog egg are controlled by fluctuations in the activity of M-phase promoting factor (MPF). The biochemical mechanism of MPF regulation is most easily studied in cytoplasmic extracts of frog eggs, for which careful experimental studies of the kinetics of phosphorylation and dephosphorylation of MPF and its regulators have been made. In 1998 Marlovits et al. used these data sets to estimate the kinetic rate constants in a mathematical model of the control system originally proposed by Novak & Tyson. In a recent publication, we showed that a gradient-based optimisation algorithm finds a locally optimal parameter set quite close to the 'Marlovits' estimates. In this paper, we combine global and local optimisation strategies to show that the 'refined Marlovits' parameter set, with one minor but significant modification to the Novak & Tyson equations, is the unique, best-fitting solution to the parameter estimation problem.

[1]  Lawrence F. Shampine,et al.  Numerical computing: An introduction , 1973 .

[2]  A. Hindmarsh LSODE and LSODI, two new initial value ordinary differential equation solvers , 1980, SGNM.

[3]  L. Petzold Automatic Selection of Methods for Solving Stiff and Nonstiff Systems of Ordinary Differential Equations , 1983 .

[4]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[5]  A Goldbeter,et al.  A Model Based on Receptor Desensitization for Cyclic AMP Signaling in Dictyostelium Cells. , 1987, Biophysical journal.

[6]  P. Boggs,et al.  A Stable and Efficient Algorithm for Nonlinear Orthogonal Distance Regression , 1987 .

[7]  Richard H. Byrd,et al.  Algorithm 676: ODRPACK: software for weighted orthogonal distance regression , 1989, TOMS.

[8]  Marc W. Kirschner,et al.  Cyclin activation of p34 cdc2 , 1990, Cell.

[9]  Janet E. Rogers,et al.  User's reference guide for ODRPACK version 2.01:: software for weighted orthogonal distance regression , 1992 .

[10]  A. Kumagai,et al.  Regulation of the cdc25 protein during the cell cycle in Xenopus extracts , 1992, Cell.

[11]  Alan C. Hindmarsh,et al.  Description and use of LSODE, the Livermore Solver for Ordinary Differential Equations , 1993 .

[12]  J. Tyson,et al.  Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. , 1993, Journal of cell science.

[13]  D. Bray,et al.  Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. , 1993, Molecular biology of the cell.

[14]  T. Coleman,et al.  Two distinct mechanisms for negative regulation of the Wee1 protein kinase. , 1993, The EMBO journal.

[15]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[16]  A. Kumagai,et al.  Control of the Cdc2/cyclin B complex in Xenopus egg extracts arrested at a G2/M checkpoint with DNA synthesis inhibitors. , 1995, Molecular biology of the cell.

[17]  D. Bray Protein molecules as computational elements in living cells , 1995, Nature.

[18]  H. McAdams,et al.  Circuit simulation of genetic networks. , 1995, Science.

[19]  Juan C. Meza,et al.  A comparison of a direct search method and a genetic algorithm for conformational searching , 1996 .

[20]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[21]  J. Tyson,et al.  Modeling M-phase control in Xenopus oocyte extracts: the surveillance mechanism for unreplicated DNA. , 1998, Biophysical chemistry.

[22]  David H. Sharp,et al.  Prediction of mutant expression patterns using gene circuits. , 1998, Bio Systems.

[23]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[24]  K. Kohn Molecular interaction map of the mammalian cell cycle control and DNA repair systems. , 1999, Molecular biology of the cell.

[25]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[26]  R. Brent,et al.  Genomic Biology , 2000, Cell.

[27]  Barbara M. Bakker,et al.  Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. , 2000, European journal of biochemistry.

[28]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[29]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[30]  V. Torczon,et al.  Direct search methods: then and now , 2000 .

[31]  Layne T. Watson,et al.  A Fully Distribute Parallel Global Search Algorithm , 2001, PPSC.

[32]  D. Lauffenburger,et al.  A Computational Study of Feedback Effects on Signal Dynamics in a Mitogen‐Activated Protein Kinase (MAPK) Pathway Model , 2001, Biotechnology progress.

[33]  H. Meinhardt,et al.  Pattern formation in Escherichia coli: A model for the pole-to-pole oscillations of Min proteins and the localization of the division site , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Kathy Chen,et al.  Network dynamics and cell physiology , 2001, Nature Reviews Molecular Cell Biology.

[35]  Farren J. Isaacs,et al.  Computational studies of gene regulatory networks: in numero molecular biology , 2001, Nature Reviews Genetics.

[36]  A. Hoffmann,et al.  The I (cid:1) B –NF-(cid:1) B Signaling Module: Temporal Control and Selective Gene Activation , 2022 .

[37]  P. Brazhnik,et al.  Gene networks: how to put the function in genomics. , 2002, Trends in biotechnology.

[38]  F. Cross,et al.  Testing a mathematical model of the yeast cell cycle. , 2002, Molecular biology of the cell.

[39]  Clifford A. Shaffer,et al.  Dynamic Data Structures for a Direct Search Algorithm , 2002, Comput. Optim. Appl..

[40]  John J. Tyson,et al.  Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Srikanta P Kumar,et al.  BioSPICE: a computational infrastructure for integrative biology. , 2003, Omics : a journal of integrative biology.

[42]  Eduardo Sontag,et al.  Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 , 2003, Nature Cell Biology.

[43]  Tamara G. Kolda,et al.  Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods , 2003, SIAM Rev..

[44]  Clifford A. Shaffer,et al.  Globally optimal transmitter placement for indoor wireless communication systems , 2004, IEEE Transactions on Wireless Communications.

[45]  F. Allgöwer,et al.  Bistability Analyses of a Caspase Activation Model for Receptor-induced Apoptosis* , 2004, Journal of Biological Chemistry.

[46]  Katherine C. Chen,et al.  Integrative analysis of cell cycle control in budding yeast. , 2004, Molecular biology of the cell.

[47]  Y. Lazebnik Can a biologist fix a radio? -- Or, what I learned while studying apoptosis, (Cancer Cell. 2002 Sep;2(3):179-82). , 2002, Biochemistry. Biokhimiia.

[48]  John J. Tyson,et al.  Parameter Estimation for a Mathematical Model of the Cell Cycle in Frog Eggs , 2005, J. Comput. Biol..