How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels

Density functional theory calculations explain copper's unique ability to convert CO2 into hydrocarbons, which may open up (photo-)electrochemical routes to fuels.

[1]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[2]  Matthew Neurock,et al.  First-Principles Analysis of the Initial Electroreduction Steps of Oxygen over Pt(111) , 2009 .

[3]  A. Anderson,et al.  Oxygen reduction on platinum electrodes in base: Theoretical study , 2007 .

[4]  A. Sammells,et al.  Evidence for Formaldehyde, Formic Acid, and Acetaldehyde as Possible Intermediates during Electrochemical Carbon Dioxide Reduction at Copper , 1989 .

[5]  J. J. Kim,et al.  Reduction of CO2 and CO to methane on Cu foil electrodes , 1988 .

[6]  J. Nørskov,et al.  First principles calculations and experimental insight into methane steam reforming over transition metal catalysts , 2008 .

[7]  C. Au,et al.  A density functional study of CO2 adsorption on the (100) face of Cu(9,4,1) cluster model , 1997 .

[8]  Y. Hori,et al.  Electroreduction of carbon monoxide to methane and ethylene at a copper electrode in aqueous solutions at ambient temperature and pressure , 1987 .

[9]  Egill Skúlason,et al.  Modeling the electrified solid-liquid interface , 2008 .

[10]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[11]  Joost VandeVondele,et al.  The electron attachment energy of the aqueous hydroxyl radical predicted from the detachment energy of the aqueous hydroxide anion. , 2009, Journal of the American Chemical Society.

[12]  John Newman,et al.  Design of an Electrochemical Cell Making Syngas ( CO + H2 ) from CO2 and H2O Reduction at Room Temperature , 2007 .

[13]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[14]  Anne C. Co,et al.  A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper , 2006 .

[15]  G. Karlberg,et al.  Density-functional based modeling of the intermediate in the water production reaction on Pt(111). , 2004, Physical review letters.

[16]  M. Koper Molecular-Level Modeling of Anode and Cathode Electrocatalysis for PEM Fuel Cells , 2009 .

[17]  R. Car,et al.  The electroreduction of hydrogen on platinum(111) in acidic media , 2002 .

[18]  Manos Mavrikakis,et al.  On the mechanism of low-temperature water gas shift reaction on copper. , 2008, Journal of the American Chemical Society.

[19]  Egill Skúlason,et al.  The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations , 2010 .

[20]  Guichang Wang,et al.  Cluster and periodic DFT calculations of adsorption and activation of CO2 on the Cu(hkl) surfaces , 2004 .

[21]  M. Mavrikakis,et al.  Interaction of Carbon Dioxide with Cu Overlayers on Pt(111) , 2008 .

[22]  A. Gross,et al.  Water bilayer on the Pd/Au(1 1 1) overlayer system: Coadsorption and electric field effects , 2005 .

[23]  W. Green,et al.  Computational Investigation of Thermochemistry and Kinetics of Steam Methane Reforming on Ni(111) under Realistic Conditions , 2009 .

[24]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[25]  Akira Murata,et al.  PRODUCTION OF METHANE AND ETHYLENE IN ELECTROCHEMICAL REDUCTION OF CARBON DIOXIDE AT COPPER ELECTRODE IN AQUEOUS HYDROGENCARBONATE SOLUTION , 1986 .

[26]  Toshio Tsukamoto,et al.  Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media , 1994 .

[27]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[28]  J Rossmeisl,et al.  Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. , 2007, Physical chemistry chemical physics : PCCP.

[29]  A. Bard,et al.  Electrochemical and Surface Studies of Carbon Dioxide Reduction to Methane and Ethylene at Copper Electrodes in Aqueous Solutions , 1989 .

[30]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[31]  C. Cabrera,et al.  Voltammetric study of CO2 reduction at Cu electrodes under different KHCO3 concentrations, temperatures and CO2 pressures , 2001 .

[32]  J. Nørskov,et al.  Universality in Heterogeneous Catalysis , 2002 .

[33]  Zhipan Liu,et al.  Surface Phase Diagram and Oxygen Coupling Kinetics on Flat and Stepped Pt Surfaces under Electrochemical Potentials , 2009 .

[34]  Karsten W. Jacobsen,et al.  An object-oriented scripting interface to a legacy electronic structure code , 2002, Comput. Sci. Eng..