Transition time modeling in deep submicron CMOS

As generally recognized, the performance of a CMOS gate, such as propagation delay time or short circuit power dissipation, is strongly affected by the nonzero input signal transition time. This paper presents an analytical model of the transition time of CMOS structures. The authors first develop the model for inverters, considering fast and slow input signal conditions, over a large design range of input-output coupling capacitance and capacitive load. They then extend this model to more complex gates. The validity of the presented model is demonstrated through a comparison with HSPICE simulations on a 0.18 /spl mu/m CMOS process.

[1]  Ruchir Puri,et al.  Optimal P/N width ratio selection for standard cell libraries , 1999, ICCAD.

[2]  Spiridon Nikolaidis,et al.  Analytical transient response and propagation delay evaluation of the CMOS inverter for short-channel devices , 1998, IEEE J. Solid State Circuits.

[3]  Sung-Mo Kang,et al.  ILLIADS: a fast timing and reliability simulator for digital MOS circuits , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  Nicholas C. Rumin,et al.  Inverter models of CMOS gates for supply current and delay evaluation , 1994, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[5]  Takayasu Sakurai,et al.  Analysis and future trend of short-circuit power , 2000, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[6]  Sarma Vrudhula,et al.  A new short circuit power model for complex CMOS gates , 1999, Proceedings IEEE Alessandro Volta Memorial Workshop on Low-Power Design.

[7]  D. Auvergne,et al.  A comprehensive delay macro modeling for submicrometer CMOS logics , 1999, IEEE J. Solid State Circuits.

[8]  A. R. Newton,et al.  Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas , 1990 .

[9]  Ibrahim N. Hajj,et al.  Improved delay and current models for estimating maximum currents in CMOS VLSI circuits , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[10]  J R Burns,et al.  SWITCHING RESPONSE OF COMPLEMENTARY SYMMETRY MOS TRANSISTOR LOGIC CIRCUITS , 1964 .

[11]  Jean Michel Daga,et al.  Signal transition time effect on CMOS delay evaluation , 2000 .

[12]  Takayasu Sakurai,et al.  A simple MOSFET model for circuit analysis , 1991 .

[13]  Daniel Auvergne,et al.  A novel macromodel for power estimation in CMOS structures , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Kjell O. Jeppson,et al.  CMOS Circuit Speed and Buffer Optimization , 1987, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[15]  Alexander Chatzigeorgiou,et al.  A modeling technique for CMOS gates , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[16]  Anas A. Hamoui,et al.  An analytical model for current, delay, and power analysis of submicron CMOS logic circuits , 2000 .

[17]  Sung-Mo Kang,et al.  Analytic transient solution of general MOS circuit primitives , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[18]  H. Onodera,et al.  Proposal of a timing model for CMOS logic gates driving a CRC /spl pi/ load , 1998, 1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287).

[19]  Eby G. Friedman,et al.  Channel width tapering of serially connected MOSFET's with emphasis on power dissipation , 1994, IEEE Trans. Very Large Scale Integr. Syst..

[20]  S. Dutta,et al.  A comprehensive delay model for CMOS inverters , 1995 .

[21]  Karem A. Sakallah,et al.  Analytical transient response of CMOS inverters , 1992 .

[22]  Alexander Chatzigeorgiou,et al.  Collapsing the transistor chain to an effective single equivalent transistor , 1998, Proceedings Design, Automation and Test in Europe.

[23]  Lynn Conway,et al.  Introduction to VLSI systems , 1978 .