Dynamic and Static Topic Model for Analyzing Time-Series Document Collections
暂无分享,去创建一个
Naoya Takeishi | Takehisa Yairi | Koichi Hori | Rem Hida | K. Hori | T. Yairi | Naoya Takeishi | Rem Hida
[1] Yasushi Sakurai,et al. Online multiscale dynamic topic models , 2010, KDD.
[2] W. Eric L. Grimson,et al. Construction of Dependent Dirichlet Processes based on Poisson Processes , 2010, NIPS.
[3] John D. Lafferty,et al. Dynamic topic models , 2006, ICML.
[4] T. Minka. Estimating a Dirichlet distribution , 2012 .
[5] Yee Whye Teh,et al. Poisson Random Fields for Dynamic Feature Models , 2016, J. Mach. Learn. Res..
[6] Wei Li,et al. Pachinko allocation: DAG-structured mixture models of topic correlations , 2006, ICML.
[7] Eric P. Xing,et al. Timeline: A Dynamic Hierarchical Dirichlet Process Model for Recovering Birth/Death and Evolution of Topics in Text Stream , 2010, UAI.
[8] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[9] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[10] Nando de Freitas,et al. An Introduction to MCMC for Machine Learning , 2004, Machine Learning.
[11] John D. Lafferty,et al. Correlated Topic Models , 2005, NIPS.
[12] Naoya Takeishi,et al. Recent Developments in Aerial Robotics: A Survey and Prototypes Overview , 2017, ArXiv.
[13] Yu Huang,et al. Discovering hierarchical topic evolution in time‐stamped documents , 2016, J. Assoc. Inf. Sci. Technol..
[14] Huidong Jin,et al. A segmented topic model based on the two-parameter Poisson-Dirichlet process , 2010, Machine Learning.
[15] Andrew McCallum,et al. Topics over time: a non-Markov continuous-time model of topical trends , 2006, KDD '06.