Trim33 masks a non-transcriptional function of E2f4 in replication fork progression

[1]  A. Rosenwald,et al.  MYC multimers shield stalled replication forks from RNA polymerase , 2022, Nature.

[2]  Zuxianglan Zhao,et al.  TRIM33 drives prostate tumor growth by stabilizing androgen receptor from Skp2‐mediated degradation , 2022, EMBO reports.

[3]  Jonathan H. Morgan,et al.  TRIM33 Loss in Multiple Myeloma Impairs the DNA Damage Response Resulting in Sensitivity to PARP and ATR Inhibitors , 2021, Blood.

[4]  P. Pasero,et al.  Replication stress: from chromatin to immunity and beyond. , 2021, Current opinion in genetics & development.

[5]  S. Campaner,et al.  MYC-Induced Replicative Stress: A Double-Edged Sword for Cancer Development and Treatment , 2021, International journal of molecular sciences.

[6]  Kathleen M. Jagodnik,et al.  Gene Set Knowledge Discovery with Enrichr , 2021, Current protocols.

[7]  P. Cramer,et al.  Ubiquitylation of MYC couples transcription elongation with double-strand break repair at active promoters. , 2021, Molecular cell.

[8]  R. Beijersbergen,et al.  The RECQL helicase prevents replication fork collapse during replication stress , 2020, Life Science Alliance.

[9]  M. Skrzypczak,et al.  Topoisomerase 1 prevents replication stress at R-loop-enriched transcription termination sites , 2020, Nature Communications.

[10]  Sudha Sharma,et al.  RECQ1 Helicase in Genomic Stability and Cancer , 2020, Genes.

[11]  Angela M. Zaino,et al.  HLTF Promotes Fork Reversal, Limiting Replication Stress Resistance and Preventing Multiple Mechanisms of Unrestrained DNA Synthesis. , 2020, Molecular cell.

[12]  M. Eilers,et al.  Target gene-independent functions of MYC oncoproteins , 2020, Nature Reviews Molecular Cell Biology.

[13]  M. Lopes,et al.  Fork Cleavage-Religation Cycle and Active Transcription Mediate Replication Restart after Fork Stalling at Co-transcriptional R-Loops. , 2019, Molecular cell.

[14]  A. Aguilera,et al.  Transcription-mediated replication hindrance: a major driver of genome instability , 2019, Genes & development.

[15]  Julian Spies,et al.  53BP1 nuclear bodies enforce replication timing at under-replicated DNA to limit heritable DNA damage , 2019, Nature Cell Biology.

[16]  D. Fenyö,et al.  Transcription shapes DNA replication initiation and termination in human cells , 2018, Nature Structural & Molecular Biology.

[17]  M. Lopes,et al.  Histone Ubiquitination by the DNA Damage Response Is Required for Efficient DNA Replication in Unperturbed S Phase. , 2018, Molecular cell.

[18]  D. Roy,et al.  Interplay between NRF1, E2F4 and MYC transcription factors regulating common target genes contributes to cancer development and progression , 2018, Cellular Oncology.

[19]  J. Bartek,et al.  High speed of fork progression induces DNA replication stress and genomic instability , 2018, Nature.

[20]  A. Nussenzweig,et al.  Endogenous DNA Damage as a Source of Genomic Instability in Cancer , 2017, Cell.

[21]  J. Sage,et al.  Novel functions for the transcription factor E2F4 in development and disease , 2016, Cell cycle.

[22]  S. Balasubramanian,et al.  DSBCapture: in situ capture and direct sequencing of dsDNA breaks , 2016, Nature Methods.

[23]  Jing Huang,et al.  Catalytic Strand Separation by RECQ1 Is Required for RPA-Mediated Response to Replication Stress , 2015, Current Biology.

[24]  A. Rosenwald,et al.  Repression of SRF target genes is critical for Myc‐dependent apoptosis of epithelial cells , 2015, The EMBO journal.

[25]  A. Aguilera,et al.  Replication stress and cancer , 2015, Nature Reviews Cancer.

[26]  Manolis Kellis,et al.  BRCA1 Recruitment to Transcriptional Pause Sites Is Required for R-Loop-Driven DNA Damage Repair , 2015, Molecular cell.

[27]  Thanos D Halazonetis,et al.  DNA replication stress as a hallmark of cancer. , 2015, Annual review of pathology.

[28]  K. Aldape,et al.  Tumour suppressor TRIM33 targets nuclear β-catenin degradation , 2014, Nature Communications.

[29]  H. Omran,et al.  Multicilin drives centriole biogenesis via E2f proteins , 2014, Genes & development.

[30]  D. Felsher,et al.  MYC activation is a hallmark of cancer initiation and maintenance. , 2014, Cold Spring Harbor perspectives in medicine.

[31]  P. Ménard,et al.  Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components , 2014, Nature Cell Biology.

[32]  M. Lopes,et al.  Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition , 2013, Nature Structural &Molecular Biology.

[33]  L. Zon,et al.  TiF1-gamma plays an essential role in murine hematopoiesis and regulates transcriptional elongation of erythroid genes. , 2013, Developmental biology.

[34]  Nayun Kim,et al.  Transcription as a source of genome instability , 2012, Nature Reviews Genetics.

[35]  D. Patel,et al.  A Poised Chromatin Platform for TGF-β Access to Master Regulators , 2011, Cell.

[36]  M. Barbacid,et al.  Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors , 2011, Nature Structural &Molecular Biology.

[37]  T. Luedde,et al.  Senescence surveillance of pre-malignant hepatocytes limits liver cancer development , 2011, Nature.

[38]  S. Dupont,et al.  Recruitment of TIF1γ to chromatin via its PHD finger-bromodomain activates its ubiquitin ligase and transcriptional repressor activities. , 2011, Molecular cell.

[39]  R. Losson,et al.  Transcription cofactors TRIM24, TRIM28, and TRIM33 associate to form regulatory complexes that suppress murine hepatocellular carcinoma , 2011, Proceedings of the National Academy of Sciences.

[40]  C. Bradshaw,et al.  Replication stress induces 53BP1-containing OPT domains in G1 cells , 2011, The Journal of cell biology.

[41]  B. Neumann,et al.  53BP1 nuclear bodies form around DNA lesions generated by mitotic transmission of chromosomes under replication stress , 2011, Nature Cell Biology.

[42]  D. Patel,et al.  TRIM24 links a noncanonical histone signature to breast cancer , 2010, Nature.

[43]  L. Zon,et al.  TIF1γ Controls Erythroid Cell Fate by Regulating Transcription Elongation , 2010, Cell.

[44]  S. Costantini,et al.  Structure of the human RECQ1 helicase reveals a putative strand-separation pin , 2009, Proceedings of the National Academy of Sciences.

[45]  S. Elledge,et al.  The ubiquitin-specific protease USP28 is required for MYC stability , 2007, Nature Cell Biology.

[46]  Wei He,et al.  Hematopoiesis Controlled by Distinct TIF1γ and Smad4 Branches of the TGFβ Pathway , 2006, Cell.

[47]  Corey M. Carlson,et al.  Somatic integration of an oncogene-harboring Sleeping Beauty transposon models liver tumor development in the mouse. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[48]  M. Rugge,et al.  Germ-Layer Specification and Control of Cell Growth by Ectodermin, a Smad4 Ubiquitin Ligase , 2005, Cell.

[49]  K. Helin,et al.  The E2F family: specific functions and overlapping interests , 2004, The EMBO journal.

[50]  D. Felsher,et al.  Defective double-strand DNA break repair and chromosomal translocations by MYC overexpression , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  T. Volkert,et al.  E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. , 2002, Genes & development.

[52]  E. Fraenkel,et al.  Structural basis of DNA recognition by the heterodimeric cell cycle transcription factor E2F-DP. , 1999, Genes & development.

[53]  R. Young,et al.  MYC and transcription elongation. , 2014, Cold Spring Harbor perspectives in medicine.

[54]  R. Sears,et al.  MYC degradation. , 2014, Cold Spring Harbor perspectives in medicine.