Tensor network simulation of the Kitaev-Heisenberg model at finite temperature

We investigate the Kitaev-Heisenberg (KH) model at finite temperature using the exact environment full update (eeFU), introduced in Phys. Rev. B 99, 035115 (2019), which represents purification of a thermal density matrix on an infinite hexagonal lattice by an infinite projected entangled pair state (iPEPS). We estimate critical temperatures for coupling constants in the stripy and the antiferromagnetic phase. They are an order of magnitude less than the couplings.

[1]  F. Becca,et al.  Optimization of infinite projected entangled pair states: The role of multiplets and their breaking , 2019, Physical Review B.

[2]  A. Weichselbaum,et al.  Thermal tensor renormalization group simulations of square-lattice quantum spin models , 2019, Physical Review B.

[3]  P. Corboz,et al.  Finite correlation length scaling with infinite projected entangled pair states at finite temperature , 2019, Physical Review B.

[4]  Juraj Rusnavcko,et al.  Kitaev-like honeycomb magnets: Global phase behavior and emergent effective models , 2019, Physical Review B.

[5]  J. Cirac,et al.  Time-dependent study of disordered models with infinite projected entangled pair states , 2018, SciPost Physics.

[6]  P. Corboz,et al.  Time evolution of an infinite projected entangled pair state: An efficient algorithm , 2018, Physical Review B.

[7]  A. Weichselbaum,et al.  Two-temperature scales in the triangular-lattice Heisenberg antiferromagnet , 2018, Physical Review B.

[8]  M. Lewenstein,et al.  Efficient quantum simulation for thermodynamics of infinite-size many-body systems in arbitrary dimensions , 2018, Physical Review B.

[9]  J. Eisert,et al.  Tensor Network Annealing Algorithm for Two-Dimensional Thermal States. , 2018, Physical review letters.

[10]  A. Lauchli,et al.  Finite Correlation Length Scaling in Lorentz-Invariant Gapless iPEPS Wave Functions , 2018, Physical Review X.

[11]  P. Corboz,et al.  Finite Correlation Length Scaling with Infinite Projected Entangled-Pair States , 2018, Physical Review X.

[12]  L. Cincio,et al.  Precise Extrapolation of the Correlation Function Asymptotics in Uniform Tensor Network States with Application to the Bose-Hubbard and XXZ Models , 2018, Physical Review X.

[13]  Wei Li,et al.  Exponential Thermal Tensor Network Approach for Quantum Lattice Models , 2017, Physical Review X.

[14]  F. Verstraete,et al.  Faster methods for contracting infinite two-dimensional tensor networks , 2017, Physical Review B.

[15]  Shi-Ju Ran,et al.  Thermodynamics of spin-1/2 Kagomé Heisenberg antiferromagnet: algebraic paramagnetic liquid and finite-temperature phase diagram. , 2017, Science bulletin.

[16]  A. Weichselbaum,et al.  Emergent spin-1 trimerized valence bond crystal in the spin-1/2 Heisenberg model on the star lattice , 2015, 1508.03451.

[17]  J. Oitmaa,et al.  High-temperature thermodynamics of the honeycomb-lattice Kitaev-Heisenberg model: A high-temperature series expansion study , 2017, 1707.01126.

[18]  J. van den Brink,et al.  Models and materials for generalized Kitaev magnetism , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  J. Chen,et al.  Optimized contraction scheme for tensor-network states , 2017, 1705.08577.

[20]  A. M. Ole's,et al.  Overcoming the sign problem at finite temperature: Quantum tensor network for the orbital eg model on an infinite square lattice , 2017, 1703.03586.

[21]  Shi-Ju Ran,et al.  Fermionic algebraic quantum spin liquid in an octa-kagome frustrated antiferromagnet , 2017, 1705.06006.

[22]  Garnet Kin-Lic Chan,et al.  Stripe order in the underdoped region of the two-dimensional Hubbard model , 2016, Science.

[23]  Hendrik Weimer,et al.  A simple tensor network algorithm for two-dimensional steady states , 2016, Nature Communications.

[24]  M. Batchelor,et al.  Finite-temperature fidelity and von Neumann entropy in the honeycomb spin lattice with quantum Ising interaction , 2016, 1611.10072.

[25]  J Chen,et al.  Gapless Spin-Liquid Ground State in the S=1/2 Kagome Antiferromagnet. , 2016, Physical review letters.

[26]  K. Wohlfeld,et al.  Phase diagram and spin correlations of the Kitaev-Heisenberg model: Importance of quantum effects , 2016, 1608.05333.

[27]  M. Rams,et al.  Variational tensor network renormalization in imaginary time: Benchmark results in the Hubbard model at finite temperature , 2016, 1607.04016.

[28]  Frank Verstraete,et al.  Gradient methods for variational optimization of projected entangled-pair states , 2016, 1606.09170.

[29]  Philippe Corboz,et al.  Variational optimization with infinite projected entangled-pair states , 2016, 1605.03006.

[30]  A. M. Ole's,et al.  Variational tensor network renormalization in imaginary time: Two-dimensional quantum compass model at finite temperature , 2015, 1512.07168.

[31]  P. Corboz Improved energy extrapolation with infinite projected entangled-pair states applied to the two-dimensional Hubbard model , 2015, 1508.04003.

[32]  Hoang Duong Tuan,et al.  Infinite projected entangled pair states algorithm improved: Fast full update and gauge fixing , 2015, 1503.05345.

[33]  Michael Marien,et al.  Excitations and the tangent space of projected entangled-pair states , 2015, Physical Review B.

[34]  Y. Motome,et al.  Thermal Fractionalization of Quantum Spins in a Kitaev Model: Coherent Transport of Majorana Fermions and $T$-linear Specific Heat , 2015, 1504.01259.

[35]  Piotr Czarnik,et al.  Variational approach to projected entangled pair states at finite temperature , 2015, 1503.01077.

[36]  Piotr Czarnik,et al.  Projected entangled pair states at finite temperature: Iterative self-consistent bond renormalization for exact imaginary time evolution , 2014, 1411.6778.

[37]  J. Ignacio Cirac,et al.  Approximating Gibbs states of local Hamiltonians efficiently with projected entangled pair states , 2014, 1406.2973.

[38]  Jens Eisert,et al.  Area laws and efficient descriptions of quantum many-body states , 2014, 1411.2995.

[39]  M. Troyer,et al.  Probing the stability of the spin liquid phases in the Kitaev-Heisenberg model using tensor network algorithms , 2014, 1408.4020.

[40]  Matthias Troyer,et al.  Competing states in the t-J model: uniform D-wave state versus stripe state. , 2014, Physical review letters.

[41]  Frédéric Mila,et al.  Crystals of bound states in the magnetization plateaus of the Shastry-Sutherland model. , 2014, Physical review letters.

[42]  Piotr Czarnik,et al.  Fermionic projected entangled pair states at finite temperature , 2013, 1311.7272.

[43]  Guifre Vidal,et al.  Scaling of entanglement entropy in the (branching) multiscale entanglement renormalization ansatz , 2013, 1310.8372.

[44]  G. Evenbly,et al.  Real-space decoupling transformation for quantum many-body systems. , 2012, Physical review letters.

[45]  A. Honecker,et al.  Magnetization of SrCu2(BO3)2 in ultrahigh magnetic fields up to 118 T. , 2013, Physical review letters.

[46]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[47]  N. Perkins,et al.  Finite temperature phase diagram of the classical Kitaev-Heisenberg model , 2013, 1304.7744.

[48]  G. Jackeli,et al.  Zigzag magnetic order in the iridium oxide Na2IrO3. , 2013, Physical review letters.

[49]  Bin Xi,et al.  Theory of network contractor dynamics for exploring thermodynamic properties of two-dimensional quantum lattice models , 2013, 1301.6439.

[50]  L. Cincio,et al.  Characterizing topological order by studying the ground States on an infinite cylinder. , 2012, Physical review letters.

[51]  Lukasz Cincio,et al.  Projected entangled pair states at finite temperature: Imaginary time evolution with ancillas , 2012, 1209.0454.

[52]  Bin Xi,et al.  Optimized decimation of tensor networks with super-orthogonalization for two-dimensional quantum lattice models , 2012, 1205.5636.

[53]  N. Perkins,et al.  Critical properties of the Kitaev-Heisenberg model. , 2012, Physical review letters.

[54]  Z. Y. Xie,et al.  Coarse-graining renormalization by higher-order singular value decomposition , 2012, 1201.1144.

[55]  S. Trebst,et al.  Finite-temperature phase diagram of the Heisenberg-Kitaev model , 2011, 1105.2005.

[56]  M. Troyer,et al.  Stripes in the two-dimensional t-J model with infinite projected entangled-pair states , 2011, 1104.5463.

[57]  Bin Xi,et al.  Linearized tensor renormalization group algorithm for the calculation of thermodynamic properties of quantum lattice models. , 2010, Physical review letters.

[58]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[59]  G. Jackeli,et al.  Kitaev-Heisenberg model on a honeycomb lattice: possible exotic phases in iridium oxides A2IrO3. , 2010, Physical review letters.

[60]  Bela Bauer,et al.  Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states , 2009, 0912.0646.

[61]  J. Eisert,et al.  Unitary circuits for strongly correlated fermions , 2009, 0905.0669.

[62]  J. Ignacio Cirac,et al.  Fermionic projected entangled pair states , 2009, 0904.4667.

[63]  Guifre Vidal,et al.  Simulation of interacting fermions with entanglement renormalization , 2009, Physical Review A.

[64]  Jens Eisert,et al.  Contraction of fermionic operator circuits and the simulation of strongly correlated fermions , 2009, 0907.3689.

[65]  Philippe Corboz,et al.  Fermionic multiscale entanglement renormalization ansatz , 2009, 0907.3184.

[66]  Roman Orus,et al.  Simulation of two-dimensional quantum systems on an infinite lattice revisited: Corner transfer matrix for tensor contraction , 2009, 0905.3225.

[67]  Xiao-Gang Wen,et al.  Tensor-entanglement renormalization group approach as a unified method for symmetry breaking and topological phase transitions , 2008 .

[68]  T. Xiang,et al.  Accurate determination of tensor network state of quantum lattice models in two dimensions. , 2008, Physical review letters.

[69]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[70]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[71]  Norbert Schuch,et al.  Entropy scaling and simulability by matrix product states. , 2007, Physical review letters.

[72]  Matthew B Hastings,et al.  Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.

[73]  F. Verstraete,et al.  Classical simulation of infinite-size quantum lattice systems in two spatial dimensions. , 2007, Physical review letters.

[74]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[75]  M. Hastings,et al.  An area law for one-dimensional quantum systems , 2007, 0705.2024.

[76]  F. Verstraete,et al.  Variational study of hard-core bosons in a two-dimensional optical lattice using projected entangled pair states , 2006, cond-mat/0611522.

[77]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[78]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[79]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[80]  M. Kikuchi,et al.  NUMERICAL RENORMALIZATION GROUP AT CRITICALITY , 1996, cond-mat/9601078.

[81]  T. Nishino,et al.  Corner Transfer Matrix Renormalization Group Method , 1995, cond-mat/9507087.

[82]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[83]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[84]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[85]  R. Baxter Variational approximations for square lattice models in statistical mechanics , 1978 .

[86]  M. Suzuki,et al.  Relationship between d-Dimensional Quantal Spin Systems and (d+1)-Dimensional Ising Systems: Equivalence, Critical Exponents and Systematic Approximants of the Partition Function and Spin Correlations , 1976 .

[87]  Masuo Suzuki Pair-Product Model of Heisenberg Ferromagnets , 1966 .

[88]  H. Trotter On the product of semi-groups of operators , 1959 .