Phase space characterization of solitons with the Wigner transform

Abstract Envelope solitons are investigated in phase space. All envelope solitons (bright, black, gray) have analytical Wigner transforms (WT) in the time-frequency phase space. Several properties of the Wigner transform and its moments have been derived and used to test an optical source claimed to generate solitons.

[1]  Daniela Dragoman The Wigner distribution function of self-Fourier functions , 1996 .

[2]  Akira Hasegawa,et al.  Optical solitons in fibers , 1993, International Commission for Optics.

[3]  M. Teague Image analysis via the general theory of moments , 1980 .

[4]  Yuri S. Kivshar,et al.  Dark solitons in nonlinear optics , 1993 .

[5]  A. Boardman,et al.  Bright magnetostatic spin-wave envelope solitons in ferromagnetic films , 1995 .

[6]  Rosario Martínez-Herrero,et al.  Parametric characterization of general partially coherent beams propagating through ABCD optical systems , 1991 .

[7]  Mj Martin Bastiaans Wigner distribution function and its application to first-order optics , 1979 .

[8]  Yuri S. Kivshar,et al.  Lagrangian approach for dark solitons , 1995 .

[9]  M. Dragoman,et al.  Wigner-transform implementation in the time-frequency domain. , 1996, Applied optics.

[10]  Peter S. Lomdahl,et al.  The Wigner Transform of Soliton Solutions for the Nonlinear Schrödinger Equation , 1994 .

[11]  Horst Weber,et al.  Wave Optical Analysis of the Phase Space Analyser , 1992 .

[12]  D. Dragoman Phase Space Representation of Modes in Optical Waveguides , 1995 .

[13]  D. Dragoman,et al.  Wigner distribution function in nonlinear optics. , 1996, Applied optics.

[14]  T. Erdogan,et al.  Packaged hybrid soliton pulse source results 70 terabit.km/sec soliton transmission , 1995, IEEE Photonics Technology Letters.

[15]  J. Paye,et al.  The chronocyclic representation of ultrashort light pulses , 1992 .

[16]  Invariance properties of general astigmatic beams through first-order optical systems , 1993 .