Evolution of complex organic molecules in hot molecular cores: Synthetic spectra at (sub-)mm wavebands

Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich emission line spectra at (sub-)mm wavebands. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s). The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. With increasing protostellar luminosity, the water ice evaporation font ($\sim$100K) expands and the spatial distribution of gas phase abundances of these COMs also spreads out. We simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. A qualitative comparison of the simulated and observed spectra suggests that these self-consistent hot core models can reproduce the notable trends in hot core spectral variation within the typical hot core timescales of 10$^{5}$ year. These models predict that the spatial distribution of various emission line maps will also expand with evolutionary time. The model predictions can be compared with high resolution observation that can probe scales of a few thousand AU in high-mass star forming regions such as from ALMA.[Abridged]

[1]  T. Henning,et al.  Chemical evolution in the early phases of massive star formation - II. Deuteration , 2015, 1503.06594.

[2]  E. Bergin,et al.  HERSCHEL OBSERVATIONS OF EXTRAORDINARY SOURCES: ANALYSIS OF THE HIFI 1.2 THz WIDE SPECTRAL SURVEY TOWARD ORION KL. I. METHODS , 2014, 1405.2351.

[3]  E. Bergin,et al.  HERSCHEL OBSERVATIONS OF EXTRAORDINARY SOURCES: ANALYSIS OF THE FULL HERSCHEL/HIFI MOLECULAR LINE SURVEY OF SAGITTARIUS B2(N) , 2014, 1405.0706.

[4]  N. Patel,et al.  HOT CORE, OUTFLOWS, AND MAGNETIC FIELDS IN W43-MM1 (G30.79 FIR 10) , 2013, 1312.2561.

[5]  R. Garrod THREE-DIMENSIONAL, OFF-LATTICE MONTE CARLO KINETICS SIMULATIONS OF INTERSTELLAR GRAIN CHEMISTRY AND ICE STRUCTURE , 2013, 1310.2512.

[6]  J. S. Whitaker,et al.  CHEMICAL EVOLUTION IN HIGH-MASS STAR-FORMING REGIONS: RESULTS FROM THE MALT90 SURVEY , 2013, 1309.3570.

[7]  H. Yorke,et al.  ON THE SIMULTANEOUS EVOLUTION OF MASSIVE PROTOSTARS AND THEIR HOST CORES , 2013, 1305.6310.

[8]  R. Garrod,et al.  THE SPATIAL DISTRIBUTION OF ORGANICS TOWARD THE HIGH-MASS YSO NGC 7538 IRS9 , 2013, 1305.3151.

[9]  E. Herbst,et al.  REACTIVE DESORPTION AND RADIATIVE ASSOCIATION AS POSSIBLE DRIVERS OF COMPLEX MOLECULE FORMATION IN THE COLD INTERSTELLAR MEDIUM , 2013, 1303.7266.

[10]  R. Garrod A THREE-PHASE CHEMICAL MODEL OF HOT CORES: THE FORMATION OF GLYCINE , 2013, 1302.0688.

[11]  D. Despois,et al.  CH3OCH3 in Orion-KL: a striking similarity with HCOOCH3 , 2012, 1212.4531.

[12]  M. Gerin,et al.  DISCOVERY OF THE METHOXY RADICAL, CH3O, TOWARD B1: DUST GRAIN AND GAS-PHASE CHEMISTRY IN COLD DARK CLOUDS , 2012 .

[13]  C. Brogan,et al.  Molecular line survey of the high-mass star-forming region NGC 6334I with Herschel/HIFI and the Submillimeter Array , 2012, 1208.5516.

[14]  F. Motte,et al.  Ammonia from cold high-mass clumps discovered in the inner Galactic disk by the ATLASGAL survey , 2012, 1208.4848.

[15]  V. Wakelam,et al.  CHEMISTRY IN THE FIRST HYDROSTATIC CORE STAGE BY ADOPTING THREE-DIMENSIONAL RADIATION HYDRODYNAMIC SIMULATIONS , 2012, 1207.6693.

[16]  C. Ceccarelli,et al.  Detection of complex organic molecules in a prestellar core: a new challenge for astrochemical models , 2012 .

[17]  S. Bontemps,et al.  Search for starless clumps in the ATLASGAL survey , 2012, 1201.4732.

[18]  B. McCall,et al.  INVESTIGATING THE COSMIC-RAY IONIZATION RATE IN THE GALACTIC DIFFUSE INTERSTELLAR MEDIUM THROUGH OBSERVATIONS OF H+3 , 2011, 1111.6936.

[19]  C. Ceccarelli,et al.  Multilayer modeling of porous grain surface chemistry - I. The GRAINOBLE model , 2011, 1111.4165.

[20]  Qizhou Zhang,et al.  Structure of the hot molecular core G10.47+0.03 , 2011, 1109.3995.

[21]  N. Evans,et al.  THE SPITZER ICE LEGACY: ICE EVOLUTION FROM CORES TO PROTOSTARS , 2011, 1107.5825.

[22]  H. Beuther,et al.  Molecular outflows and hot molecular cores in G24.78+0.08 at sub-arcsecond angular resolution , 2011, 1107.0314.

[23]  T. Henning,et al.  Chemistry in Disks. IV. Benchmarking gas-grain chemical models with surface reactions , 2010, 1007.2302.

[24]  R. Cesaroni,et al.  Infall, outflow, and rotation in the G19.61-0.23 hot molecular core , 2010, 1006.4353.

[25]  E. Herbst,et al.  Complex Organic Interstellar Molecules , 2009 .

[26]  Firenze,et al.  Cosmic-ray ionization of molecular clouds , 2009, 0904.4149.

[27]  E. Bergin,et al.  CHEMICAL DIVERSITY IN HIGH-MASS STAR FORMATION , 2008, 0810.5637.

[28]  K. Omukai,et al.  EVOLUTION OF MASSIVE PROTOSTARS WITH HIGH ACCRETION RATES , 2008, 0806.4122.

[29]  R. Garrod,et al.  Complex Chemistry in Star-forming Regions: An Expanded Gas-Grain Warm-up Chemical Model , 2008, 0803.1214.

[30]  R. Garrod,et al.  Molecular Evolution and Star Formation: From Prestellar Cores to Protostellar Cores , 2007, 0710.0712.

[31]  E. Bergin,et al.  Cold Dark Clouds: The Initial Conditions for Star Formation , 2007, 0705.3765.

[32]  E. F. Dishoeck,et al.  Testing grain-surface chemistry in massive hot-core regions , 2007, astro-ph/0702066.

[33]  R. Garrod,et al.  Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores , 2006, astro-ph/0607560.

[34]  E. Dishoeck,et al.  Astrochemical confirmation of the rapid evolution of massive YSOs and explanation for the inferred ages of hot cores , 2006, astro-ph/0605337.

[35]  Holger S. P. Müller,et al.  The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .

[36]  D. Teyssier,et al.  The Hot Core around the Low-Mass Protostar IRAS 16293–2422: Scoundrels Rule! , 2003 .

[37]  E. F. Dishoeck,et al.  Chemistry as a probe of the structures and evolution of massive star-forming regions , 2002, astro-ph/0205292.

[38]  T. K. Sridharan,et al.  High-Mass Proto-Stellar Candidates - II : Density structure from dust continuum and CS emission , 2001, astro-ph/0110370.

[39]  Holger S. P. Müller,et al.  THE COLOGNE DATABASE FOR MOLECULAR SPECTROSCOPY, CDMS , 2001 .

[40]  D. Lis,et al.  A Line Survey of Orion-KL from 607 to 725 GHz , 2001 .

[41]  W. Irvine,et al.  Chemistry of the Organic-Rich Hot Core G327.3–0.6 , 2000, The Astrophysical journal.

[42]  Alexander G. G. M. Tielens,et al.  An Inventory of Interstellar Ices toward the Embedded Protostar W33A , 2000 .

[43]  G. Blake,et al.  Structure and Evolution of the Envelopes of Deeply Embedded Massive Young Stars , 2000, astro-ph/0001527.

[44]  David A. Williams,et al.  Time-dependent evaporation of icy mantles in hot cores , 1999 .

[45]  P. Goldsmith,et al.  Population Diagram Analysis of Molecular Line Emission , 1999 .

[46]  Paul F. Goldsmith,et al.  Gas-phase chemistry in dense interstellar clouds including grain surface molecular depletion and desorption , 1995 .

[47]  E. Herbst,et al.  New gas–grain chemical models of quiescent dense interstellar clouds: the effects of H2 tunnelling reactions and cosmic ray induced desorption , 1993 .

[48]  A. Tielens,et al.  On the molecular complexity of the hot cores in Orion A - Grain surface chemistry as 'The last refuge of the scoundrel' , 1992 .

[49]  E. Herbst,et al.  Models of gas-grain chemistry in dense interstellar clouds with complex organic molecules , 1992 .

[50]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[51]  M. Melchior,et al.  UvA-DARE ( Digital Academic Repository ) Herschel spectral surveys of star-forming regions : Overview of the 555-636 GHz range , 2010 .

[52]  K. Keil,et al.  Protostars and Planets V , 2007 .

[53]  K. Rice,et al.  Protostars and Planets V , 2005 .

[54]  T G Phillips,et al.  A Line Survey of Orion KL from 325 to 360 GHz , 1997, The Astrophysical journal. Supplement series.