Superconvergence analysis of FEMs for the Stokes–Darcy system

We consider a superconvergence analysis for quadratic finite element approximations of the Stokes–Darcy system. The superclose property of an extra half order is proven for uniform triangular meshes. Based on the result of the superclose property, global superconvergence is derived by applying a postprocessing technique. In addition, some numerical examples are presented to demonstrate our theoretical results. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  M. Gunzburger,et al.  Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition , 2010 .

[2]  Ningning Yan,et al.  Superconvergence analysis of the nonconforming quadrilateral linear-constant scheme for Stokes equations , 2008, Adv. Comput. Math..

[3]  Jinchao Xu,et al.  Superconvergence of quadratic finite elements on mildly structured grids , 2008, Math. Comput..

[4]  Jinchao Xu,et al.  A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow , 2007, SIAM J. Numer. Anal..

[5]  Alfio Quarteroni,et al.  Robin-Robin Domain Decomposition Methods for the Stokes-Darcy Coupling , 2007, SIAM J. Numer. Anal..

[6]  Gerhard Starke,et al.  First-Order System Least-Squares for Darcy-Stokes Flow , 2007, SIAM J. Numer. Anal..

[7]  Jia-fu Lin,et al.  Extrapolation of the Hood–Taylor elements for the Stokes problem , 2005, Adv. Comput. Math..

[8]  A. Quarteroni,et al.  Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations , 2004 .

[9]  Zhimin Zhang,et al.  Analysis of recovery type a posteriori error estimators for mildly structured grids , 2003, Math. Comput..

[10]  E. Miglio,et al.  Mathematical and numerical models for coupling surface and groundwater flows , 2002 .

[11]  Ivan Yotov,et al.  Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..

[12]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[13]  Junping Wang,et al.  Superconvergence of Finite Element Approximations for the Stokes Problem by Projection Methods , 2001, SIAM J. Numer. Anal..

[14]  Willi Jäger,et al.  On The Interface Boundary Condition of Beavers, Joseph, and Saffman , 2000, SIAM J. Appl. Math..

[15]  Jianhua Pan,et al.  Global Superconvergence for the Bilinear-Constant Scheme for the Stokes Problem , 1997 .

[16]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[17]  Aihui Zhou,et al.  The full approximation accuracy for the stream function-vorticity-pressure method , 1994 .

[18]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[19]  Fei Hua,et al.  Modeling, analysis and simulation of the Stokes -Darcy system with Beavers -Joseph interface condition , 2009 .

[20]  Xiaoping,et al.  UNIFORMLY-STABLE FINITE ELEMENT METHODS FOR DARCY-STOKES-BRINKMAN MODELS , 2008 .

[21]  J. Galvis,et al.  NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE COUPLING STOKES-DARCY EQUATIONS , 2007 .

[22]  Béatrice Rivière,et al.  Locally Conservative Coupling of Stokes and Darcy Flows , 2005 .

[23]  Marco Discacciati,et al.  Domain decomposition methods for the coupling of surface and groundwater flows , 2004 .

[24]  Rolf Stenberg,et al.  Finite element methods: superconvergence, post-processing, and a posteriori estimates , 1998 .

[25]  Jim Douglas,et al.  A SUPERCONVERGENCE RESULT FOR THE APPROXIMATE SOLUTION OF THE HEAT EQUATION BY A COLLOCATION METHOD , 1972 .

[26]  L. A. Rukhovets,et al.  Study of the rate of convergence of variational difference schemes for second-order elliptic equations in a two-dimensional field with a smooth boundary , 1969 .