THE CARBON INVENTORY IN A QUIESCENT, FILAMENTARY MOLECULAR CLOUD IN G328

We present spectral line images of [C I] 809 GHz, CO J = 1-0 115 GHz and H I 1.4 GHz line emission, and calculate the corresponding C, CO and H column densities, for a sinuous, quiescent giant molecular cloud about 5 kpc distant along the l = 328° sightline (hereafter G328) in our Galaxy. The [C I] data comes from the High Elevation Antarctic Terahertz telescope, a new facility on the summit of the Antarctic plateau where the precipitable water vapor falls to the lowest values found on the surface of the Earth. The CO and H I data sets come from the Mopra and Parkes/ATCA telescopes, respectively. We identify a filamentary molecular cloud, ~75 × 5 pc long with mass ~4 × 104 M ☉ and a narrow velocity emission range of just 4 km s–1. The morphology and kinematics of this filament are similar in CO, [C I], and H I, though in the latter appears as self-absorption. We calculate line fluxes and column densities for the three emitting species, which are broadly consistent with a photodissociation region model for a GMC exposed to the average interstellar radiation field. The [C/CO] abundance ratio averaged through the filament is found to be approximately unity. The G328 filament is constrained to be cold (T Dust < 20 K) by the lack of far-IR emission, to show no clear signs of star formation, and to only be mildly turbulent from the narrow line width. We suggest that it may represent a GMC shortly after formation, or perhaps still in the process of formation.

[1]  Holger S. P. Müller,et al.  THE COLOGNE DATABASE FOR MOLECULAR SPECTROSCOPY, CDMS , 2001 .

[2]  Y. Fukui,et al.  Atomic hydrogen in the giant molecular cloud near M17. , 1978 .

[3]  B. Draine Physics of the Interstellar and Intergalactic Medium , 2011 .

[4]  O. Morata,et al.  Observing a column-dependent ζ in dense interstellar sources: the case of the Horsehead nebula , 2011, 1110.2399.

[5]  P. Solomon,et al.  Star formation rates and the far-infrared luminosity of Galactic molecular clouds , 1988 .

[6]  A. Bolatto,et al.  The CO-to-H2 Conversion Factor , 2013, 1301.3498.

[7]  D. Hollenbach,et al.  [Si II], [Fe II], [C II], and H2 Emission from Massive Star-forming Regions , 2006 .

[8]  H. Yamamoto,et al.  Clumpy photon-dominated regions in Carina - I. [C I] and mid-J CO lines in two 4'$\times$4' fields , 2007, 0711.1320.

[9]  L. Hartmann,et al.  Rapid star formation and global gravitational collapse , 2011, 1111.2582.

[10]  B. McCall,et al.  INVESTIGATING THE COSMIC-RAY IONIZATION RATE IN THE GALACTIC DIFFUSE INTERSTELLAR MEDIUM THROUGH OBSERVATIONS OF H+3 , 2011, 1111.6936.

[11]  P. Goldsmith,et al.  A Herschel (C II) Galactic plane survey II. CO-dark H2 in clouds , 2013, 1312.3320.

[12]  L. A. Higgs,et al.  A New View of Cold H I Clouds in the Milky Way , 2000 .

[13]  J. Goicoechea,et al.  THE CHEMISTRY OF INTERSTELLAR OH+, H2O+, AND H3O+: INFERRING THE COSMIC-RAY IONIZATION RATES FROM OBSERVATIONS OF MOLECULAR IONS , 2012, 1205.6446.

[14]  J. Good,et al.  The far-infrared luminosity of molecular clouds in the Galaxy , 1989 .

[15]  P. Goldsmith,et al.  Population Diagram Analysis of Molecular Line Emission , 1999 .

[16]  J. Rathborne,et al.  PHYSICAL PROPERTIES AND GALACTIC DISTRIBUTION OF MOLECULAR CLOUDS IDENTIFIED IN THE GALACTIC RING SURVEY , 2010, 1010.2798.

[17]  D. Li,et al.  Herschel / HIFI : first science highlights Special feature L etter to the E ditor C + detection of warm dark gas in diffuse clouds , 2010 .

[18]  D. Hollenbach,et al.  WATER, O2, AND ICE IN MOLECULAR CLOUDS , 2008, 0809.1642.

[19]  A. Tielens,et al.  Neutral Atomic Phases of the Interstellar Medium in the Galaxy , 2003 .

[20]  The Neutral Atomic Phases of the ISM in the Galaxy , 2002, astro-ph/0207098.

[21]  H. Habing The interstellar radiation density between 912 A and 2400 A , 1968 .

[22]  Holger S. P. Müller,et al.  The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .

[23]  A. Tielens,et al.  Photodissociation regions. I - Basic model. II - A model for the Orion photodissociation region , 1985 .

[24]  Firenze,et al.  Cosmic-ray ionization of molecular clouds , 2009, 0904.4149.

[25]  J. Cardelli,et al.  Carbon in the Diffuse Interstellar Medium , 1997 .

[26]  Michael G. Burton,et al.  The Mopra Southern Galactic Plane CO Survey , 2013, Publications of the Astronomical Society of Australia.

[27]  A. Tielens,et al.  CO(J = 1-0) line emission from giant molecular clouds , 1993 .

[28]  T. Dame,et al.  Milky Ways Surveys: the structure and evolution of our galaxy, Boston, USA., 15-17 June 2003 , 2004 .

[29]  J. Lauroesch,et al.  Interstellar Carbon in Translucent Sight Lines , 2004, astro-ph/0401510.

[30]  Coleman Krawczyk,et al.  RE-EXAMINING LARSON'S SCALING RELATIONSHIPS IN GALACTIC MOLECULAR CLOUDS , 2008, 0809.1397.

[31]  Daniel M. Luong-Van,et al.  Exceptional Terahertz Transparency and Stability above Dome A, Antarctica , 2010 .

[32]  David M. Winker,et al.  Where Is the Best Site on Earth? Domes A, B, C, and F, and Ridges A and B , 2009, 0905.4156.

[33]  Christopher F. McKee,et al.  THE DARK MOLECULAR GAS , 2010, 1004.5401.