Casimir self-entropy of nanoparticles with classical polarizabilities: Electromagnetic field fluctuations
暂无分享,去创建一个
K. Milton | P. Parashar | Yang Li | Xin Guo | G. Kennedy | N. Pourtolami | Prachi Parashar
[1] G. L. Klimchitskaya,et al. Casimir effect for magnetic media: Spatially nonlocal response to the off-shell quantum fluctuations , 2021, Physical Review D.
[2] K. Milton,et al. Negativity of the Casimir Self-Entropy in Spherical Geometries , 2021, Entropy.
[3] K. Milton,et al. Self-stress on a dielectric ball and Casimir–Polder forces , 2019, Annals of Physics.
[4] K. Milton,et al. Remarks on the Casimir self-entropy of a spherical electromagnetic δ -function shell , 2018, Physical Review D.
[5] M. Bordag. Free energy and entropy for thin sheets , 2018, Physical Review D.
[6] M. Bordag,et al. On the entropy of a spherical plasma shell , 2018, Journal of Physics A: Mathematical and Theoretical.
[7] Kimball A. Milton,et al. Casimir Energies for Isorefractive or Diaphanous Balls , 2018, Symmetry.
[8] U. Leonhardt,et al. Casimir self-stress in a dielectric sphere , 2017, Annals of Physics.
[9] K. Milton,et al. Electromagnetic δ -function sphere , 2017, 1708.01222.
[10] K. Milton,et al. Casimir self-entropy of a spherical electromagnetic δ -function shell , 2017, 1707.09840.
[11] G. L. Klimchitskaya,et al. Low-temperature behavior of the Casimir free energy and entropy of metallic films , 2017, 1702.01708.
[12] K. Milton,et al. Casimir Self-Entropy of an Electromagnetic Thin Sheet , 2016, 1607.07900.
[13] C. Korikov. Casimir entropy for ferromagnetic materials , 2016 .
[14] S. Reynaud,et al. Negative entropies in Casimir and Casimir‐Polder interactions , 2016, 1605.01073.
[15] R. Decca,et al. Isoelectronic determination of the thermal Casimir force , 2015, 1509.05349.
[16] M. Hartmann,et al. Disentangling geometric and dissipative origins of negative Casimir entropies. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.
[17] G. L. Klimchitskaya,et al. Casimir entropy for magnetodielectrics , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.
[18] S. Reynaud,et al. Geometric origin of negative Casimir entropies: A scattering-channel analysis. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.
[19] S. Reynaud,et al. Negative Casimir entropies in nanoparticle interactions , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.
[20] G. L. Klimchitskaya,et al. Casimir interaction between two magnetic metals in comparison with nonmagnetic test bodies , 2013, 1309.6492.
[21] K. Milton,et al. Investigations of the torque anomaly in an annular sector. I. Global calculations, scalar case , 2013, 1306.0866.
[22] S. Lamoreaux,et al. Casimir force and in situ surface potential measurements on nanomembranes. , 2012, Physical review letters.
[23] K. Milton,et al. Thermal issues in Casimir forces between conductors and semiconductors , 2012, 1205.4903.
[24] P. Rodriguez-Lopez. Casimir energy and entropy in the sphere-sphere geometry , 2011, 1104.5447.
[25] K. Pimbblet,et al. An estimate of the electron density in filaments of galaxies at z∼ 0.1 , 2011, 1104.0711.
[26] S. Lamoreaux,et al. Observation of the thermal Casimir force , 2010, 1011.5219.
[27] K. Milton. Local and Global Casimir Energies: Divergences, Renormalization, and the Coupling to Gravity , 2010, 1005.0031.
[28] S. Reynaud,et al. Thermal Casimir effect for Drude metals in the plane-sphere geometry , 2010, 1005.4294.
[29] K. Milton,et al. Thermal corrections to the Casimir effect , 2006, quant-ph/0605005.
[30] G. L. Klimchitskaya,et al. Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions , 2005, quant-ph/0503105.
[31] G. L. Klimchitskaya,et al. Violation of the Nernst heat theorem in the theory of the thermal Casimir force between Drude metals , 2004, quant-ph/0401138.
[32] G. L. Klimchitskaya,et al. Correlation of energy and free energy for the thermal Casimir force between real metals , 2002, quant-ph/0210209.
[33] G. L. Klimchitskaya,et al. Thermodynamical aspects of the Casimir force between real metals at nonzero temperature , 2002, quant-ph/0202018.
[34] G. Barton. Perturbative Casimir shifts of nondispersive spheres at finite temperature , 2001 .
[35] G. Barton. Perturbative Casimir shifts of dispersive spheres at finite temperature , 2001 .
[36] G. Scarpetta,et al. Casimir effect for a dilute dielectric ball at finite temperature , 2000, hep-th/0006121.
[37] K. Milton. The Casimir Effect: Physical Manifestations of Zero-Point Energy , 1999, hep-th/9901011.
[38] K. Milton,et al. Identity of the van der Waals Force and the Casimir Effect and the Irrelevance of These Phenomena to Sonoluminescence , 1998, hep-th/9810062.
[39] K. Milton,et al. Observability of the bulk Casimir effect: Can the dynamical Casimir effect be relevant to sonoluminescence? , 1997, hep-th/9707122.
[40] K. Milton,et al. Casimir energy for a spherical cavity in a dielectric: Applications to sonoluminescence , 1996, hep-th/9607186.
[41] M. Krech. The Casimir Effect , 1994 .
[42] J. Borwein,et al. Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity , 1998 .
[43] P. Shiu,et al. PI AND THE AGM A Study in Analytic Number Theory and Computational Complexity (Canadian Mathematical Society Series of Monographs and Advanced Texts) , 1988 .
[44] I. Brevik,et al. The Casimir effect in a solid ball when εμ = 1 , 1982 .
[45] K. Milton,et al. Semiclassical electron models: Casimir self-stress in dielectric and conducting balls , 1980 .
[46] J. Schwinger,et al. Casimir self-stress on a perfectly conducting spherical shell , 1978 .
[47] J. Schwinger,et al. Casimir effect in dielectrics , 1978 .
[48] R. Balian,et al. Electromagnetic waves near perfect conductors. II. Casimir effect , 1978 .
[49] S. Christensen. Vacuum Expectation Value of the Stress Tensor in an Arbitrary Curved Background: The Covariant Point Separation Method , 1976 .
[50] E. M. Lifshitz,et al. The general theory of van der Waals forces , 1961 .
[51] E. Lifshitz. The theory of molecular attractive forces between solids , 1956 .
[52] H. Casimir,et al. Influence of Retardation on the London–van der Waals Forces , 1946, Nature.