A reference high-pressure CO2 adsorption isotherm for ammonium ZSM-5 zeolite: results of an interlaboratory study
暂无分享,去创建一个
J. A. Ritter | S. Brandani | B. Krooss | A. Ebner | E. Mangano | K. Cychosz | R. Siegelman | G. De Weireld | G. Weireld | L. Espinal | D. Broom | A. Ebner | L. Erden | K. Nakai | P. Bertier | M. Thommes | A. Moran | O. Talu | M. Benham | R. V. van Zee | H. G. Nguyen | B. Toman | M. Hakuman | M. S. Hudson | F. Yang | B. Krooss | Y. Huang | K. S. Walton | P. Billemont | B. M. Krooss | Krista S. Walton | Stefano Brandani | Laura Espinal | R. D. V. Zee | Pieter Bertier | Yi Huang
[1] W. J. Thompson,et al. Bayesian Data Analysis , 2024, The SAGE Encyclopedia of Research Design.
[2] Colin J. Webb,et al. Pitfalls in the characterisation of the hydrogen sorption properties of materials , 2017 .
[3] M. Thommes,et al. Experimental aspects of buoyancy correction in measuring reliable high-pressure excess adsorption isotherms using the gravimetric method , 2017, Measurement science & technology.
[4] Michael Hirscher,et al. Irreproducibility in hydrogen storage material research , 2016 .
[5] S. Brandani,et al. Net, excess and absolute adsorption and adsorption of helium , 2016, Adsorption.
[6] A. Mangone,et al. A pottery jigsaw puzzle: distinguish true and false pieces in two Apulian red figured vases by a poli-technique action plan , 2016 .
[7] Thomas Gennett,et al. An international multi-laboratory investigation of carbon-based hydrogen sorbent materials , 2016 .
[8] A. Amirfazli,et al. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating , 2015, Applied Physics A.
[9] J. P. Olivier,et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .
[10] Guy De Weireld,et al. First international inter-laboratory comparison of high-pressure CH4, CO2 and C2H6 sorption isotherms on carbonaceous shales , 2014 .
[11] Martin L. Green,et al. Measurement, standards, and data needs for CO2 capture materials: a critical review. , 2013, Environmental science & technology.
[12] Sabrina Sartori,et al. A Round Robin Test exercise on hydrogen absorption/desorption properties of a magnesium hydride based material , 2013 .
[13] Abhoyjit S Bhown,et al. In silico screening of carbon-capture materials. , 2012, Nature materials.
[14] R. Snurr,et al. Development and Evaluation of Porous Materials for Carbon Dioxide Separation and Capture , 2012 .
[15] B. Morreale,et al. Materials challenges in carbon-mitigation technologies , 2012 .
[16] Kenji Sumida,et al. Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.
[17] D. Cole,et al. Pore Size Effects on the Sorption of Supercritical CO2 in Mesoporous CPG-10 Silica , 2012 .
[18] Randall Q Snurr,et al. Development and evaluation of porous materials for carbon dioxide separation and capture. , 2011, Angewandte Chemie.
[19] Andreas Busch,et al. European inter-laboratory comparison of high pressure CO2 sorption isotherms II: Natural coals , 2010 .
[20] Amy J. Cairns,et al. Insights on Adsorption Characterization of Metal-Organic Frameworks: A Benchmark Study on the Novel soc-MOF , 2010 .
[21] A. Busch,et al. European inter-laboratory comparison of high pressure CO2 sorption isotherms. I: Activated carbon , 2009 .
[22] Christopher W. Jones,et al. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.
[23] P. Moretto,et al. A Round Robin characterisation of the hydrogen sorption properties of a carbon based material , 2009 .
[24] Mark E. Davis,et al. Characterization of chemical properties, unit cell parameters and particle size distribution of three zeolite reference materials: RM 8850 – zeolite Y, RM 8851 – zeolite A and RM 8852 – ammonium ZSM-5 zeolite , 2008 .
[25] Andreas Busch,et al. Inter-laboratory comparison II: CO2 isotherms measured on moisture-equilibrated Argonne premium coals at 55 °C and up to 15 MPa , 2007 .
[26] Blaza Toman,et al. Assessment of measurement uncertainty via observation equations , 2007 .
[27] C. M. White,et al. Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane RecoveryA Review , 2005 .
[28] R. Staudt,et al. Gas Adsorption Equilibria: Experimental Methods and Adsorption Isotherms , 2004 .
[29] D. Tomasko,et al. High-pressure adsorption of CO2 on NaY zeolite and model prediction of adsorption isotherms. , 2004, Langmuir : the ACS journal of surfaces and colloids.
[30] Andreas Busch,et al. An inter-laboratory comparison of CO2 isotherms measured on argonne premium coal samples , 2004 .
[31] Y. Belmabkhout,et al. High-pressure adsorption measurements. A comparative study of the volumetric and gravimetric methods , 2004 .
[32] R. T. Yang,et al. Adsorbents: Fundamentals and Applications , 2003 .
[33] A. Da̧browski. Adsorption--from theory to practice. , 2001, Advances in colloid and interface science.
[34] D. Tomasko,et al. High‐resolution adsorption isotherms of supercritical carbon dioxide on activated carbon , 2000 .
[35] K. Sing,et al. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications , 1998 .
[36] R. Chahine,et al. Adsorbent Helium Density Measurement and Its Effect on Adsorption Isotherms at High Pressure , 1997 .
[37] W. Wagner,et al. A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple‐Point Temperature to 1100 K at Pressures up to 800 MPa , 1996 .
[38] M. W. Green,et al. 2. Handbook of the Logistic Distribution , 1991 .
[39] W. M. Meier,et al. Structure of synthetic zeolite ZSM-5 , 1978, Nature.
[40] Byung-Ik Lee,et al. A generalized thermodynamic correlation based on three‐parameter corresponding states , 1975 .
[41] P. G. Menon. Adsorption at high pressures , 1968 .
[42] J. Čejka,et al. Zeolites in Catalysis: Properties and Applications , 2017 .
[43] David B. Dunson,et al. Bayesian data analysis, third edition , 2013 .
[44] M. Thommes,et al. High-Pressure Physisorption of Gases on Planar Surfaces and in Porous Materials , 1997 .